File size: 5,664 Bytes
011e303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import spaces
import gradio as gr
import numpy as np
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import torch
from transformers import pipeline as transformers_pipeline
import re

# Device selection for image generation (GPU if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Stable Diffusion XL pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
    "votepurchase/waiNSFWIllustrious_v120",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

# Force modules to fp16 for memory efficiency
pipe.text_encoder.to(torch.float16)
pipe.text_encoder_2.to(torch.float16)
pipe.vae.to(torch.float16)
pipe.unet.to(torch.float16)

# Korean → English translator (CPU only)
translator = transformers_pipeline(
    "translation",
    model="Helsinki-NLP/opus-mt-ko-en",
    device=-1,  # -1 forces CPU
)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
korean_regex = re.compile("[\uac00-\ud7af]+")

def maybe_translate(text: str) -> str:
    """Translate Korean text to English if Korean characters are detected."""
    if korean_regex.search(text):
        translation = translator(text, max_length=256, clean_up_tokenization_spaces=True)
        return translation[0]["translation_text"]
    return text

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    prompt = maybe_translate(prompt)
    negative_prompt = maybe_translate(negative_prompt)

    if len(prompt.split()) > 60:
        print("Warning: Prompt may be too long and will be truncated by the model")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)

    try:
        output_image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
        return output_image
    except RuntimeError as e:
        print(f"Error during generation: {e}")
        error_img = Image.new("RGB", (width, height), color=(0, 0, 0))
        return error_img

# Custom styling
css = """
body {background: #0f0f0f; color: #fafafa; font-family: 'Noto Sans', sans-serif;}
#col-container {margin: 0 auto; max-width: 640px;}
.gr-button {background: #2563eb; color: #ffffff; border-radius: 8px;}
#prompt-box textarea {font-size: 1.1rem; height: 3rem;}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        ## 🖌️ Stable Diffusion XL Playground  
        Generate high quality illustrations with a single prompt.  
        **Tip:** Write in Korean or English. Korean will be translated automatically.
        """
    )

    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                elem_id="prompt-box",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt (60 words max)",
            )
            run_button = gr.Button("Generate", scale=0)

        result = gr.Image(label="", show_label=False)

        examples = gr.Examples(
            examples=[
                ["어두운 재즈 바에서 담배 연기를 내뿜는 미스터리한 팜파탈, 성인용 애니메이션 스타일"],
                ["노출이 강조된 드레스를 입은 고딕 뱀파이어 여왕, 드라마틱 조명, 성인 애니 아트"],
                ["은은한 조명의 온천에서 두 연인이 마주 서 있는 관능적 장면, 성인용 애니메이션"],
                ["네온이 빛나는 사이버펑크 클럽 무대에서 도발적인 의상을 입은 댄서, 성인 애니 스타일"],
                ["달빛 아래 요염한 마법사가 주문을 외우는 판타지 장면, 성인용 애니 일러스트"],
            ],
            inputs=[prompt],
        )

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, low quality, watermark, signature",
            )

            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024
                )
                height = gr.Slider(
                    label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7
                )
                num_inference_steps = gr.Slider(
                    label="Inference steps", minimum=1, maximum=28, step=1, value=28
                )

    run_button.click(
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result],
    )

demo.queue().launch()