|
from safetensors.torch import load_file |
|
import torch |
|
from tqdm import tqdm |
|
|
|
__all__ = [ |
|
'flux_load_lora' |
|
] |
|
|
|
|
|
def is_int(d): |
|
try: |
|
d = int(d) |
|
return True |
|
except Exception as e: |
|
return False |
|
|
|
|
|
def flux_load_lora(self, lora_file, lora_weight=1.0): |
|
device = self.transformer.device |
|
|
|
|
|
state_dict, network_alphas = self.lora_state_dict(lora_file, return_alphas=True) |
|
state_dict = {k:v.to(device) for k,v in state_dict.items()} |
|
|
|
model = self.transformer |
|
keys = list(state_dict.keys()) |
|
keys = [k for k in keys if k.startswith('transformer.')] |
|
|
|
for k_lora in tqdm(keys, total=len(keys), desc=f"loading lora in transformer ..."): |
|
v_lora = state_dict[k_lora] |
|
|
|
|
|
if '.lora_A.weight' in k_lora: |
|
continue |
|
if '.alpha' in k_lora: |
|
continue |
|
|
|
k_lora_name = k_lora.replace("transformer.", "") |
|
k_lora_name = k_lora_name.replace(".lora_B.weight", "") |
|
attr_name_list = k_lora_name.split('.') |
|
|
|
cur_attr = model |
|
latest_attr_name = '' |
|
for idx in range(0, len(attr_name_list)): |
|
attr_name = attr_name_list[idx] |
|
if is_int(attr_name): |
|
cur_attr = cur_attr[int(attr_name)] |
|
latest_attr_name = '' |
|
else: |
|
try: |
|
if latest_attr_name != '': |
|
cur_attr = cur_attr.__getattr__(f"{latest_attr_name}.{attr_name}") |
|
else: |
|
cur_attr = cur_attr.__getattr__(attr_name) |
|
latest_attr_name = '' |
|
except Exception as e: |
|
if latest_attr_name != '': |
|
latest_attr_name = f"{latest_attr_name}.{attr_name}" |
|
else: |
|
latest_attr_name = attr_name |
|
|
|
up_w = v_lora |
|
down_w = state_dict[k_lora.replace('.lora_B.weight', '.lora_A.weight')] |
|
|
|
|
|
einsum_a = f"ijabcdefg" |
|
einsum_b = f"jkabcdefg" |
|
einsum_res = f"ikabcdefg" |
|
length_shape = len(up_w.shape) |
|
einsum_str = f"{einsum_a[:length_shape]},{einsum_b[:length_shape]}->{einsum_res[:length_shape]}" |
|
dtype = cur_attr.weight.data.dtype |
|
d_w = torch.einsum(einsum_str, up_w.to(torch.float32), down_w.to(torch.float32)).to(dtype) |
|
cur_attr.weight.data = cur_attr.weight.data + d_w * lora_weight |
|
|
|
|
|
|
|
|
|
raw_state_dict = load_file(lora_file) |
|
raw_state_dict = {k:v.to(device) for k,v in raw_state_dict.items()} |
|
|
|
|
|
state_dict = {k:v for k,v in raw_state_dict.items() if 'lora_te1_' in k} |
|
model = self.text_encoder |
|
keys = list(state_dict.keys()) |
|
keys = [k for k in keys if k.startswith('lora_te1_')] |
|
|
|
for k_lora in tqdm(keys, total=len(keys), desc=f"loading lora in text_encoder ..."): |
|
v_lora = state_dict[k_lora] |
|
|
|
|
|
if '.lora_down.weight' in k_lora: |
|
continue |
|
if '.alpha' in k_lora: |
|
continue |
|
|
|
k_lora_name = k_lora.replace("lora_te1_", "") |
|
k_lora_name = k_lora_name.replace(".lora_up.weight", "") |
|
attr_name_list = k_lora_name.split('_') |
|
|
|
cur_attr = model |
|
latest_attr_name = '' |
|
for idx in range(0, len(attr_name_list)): |
|
attr_name = attr_name_list[idx] |
|
if is_int(attr_name): |
|
cur_attr = cur_attr[int(attr_name)] |
|
latest_attr_name = '' |
|
else: |
|
try: |
|
if latest_attr_name != '': |
|
cur_attr = cur_attr.__getattr__(f"{latest_attr_name}_{attr_name}") |
|
else: |
|
cur_attr = cur_attr.__getattr__(attr_name) |
|
latest_attr_name = '' |
|
except Exception as e: |
|
if latest_attr_name != '': |
|
latest_attr_name = f"{latest_attr_name}_{attr_name}" |
|
else: |
|
latest_attr_name = attr_name |
|
|
|
up_w = v_lora |
|
down_w = state_dict[k_lora.replace('.lora_up.weight', '.lora_down.weight')] |
|
|
|
alpha = state_dict.get(k_lora.replace('.lora_up.weight', '.alpha'), None) |
|
if alpha is None: |
|
lora_scale = 1 |
|
else: |
|
rank = up_w.shape[1] |
|
lora_scale = alpha / rank |
|
|
|
|
|
einsum_a = f"ijabcdefg" |
|
einsum_b = f"jkabcdefg" |
|
einsum_res = f"ikabcdefg" |
|
length_shape = len(up_w.shape) |
|
einsum_str = f"{einsum_a[:length_shape]},{einsum_b[:length_shape]}->{einsum_res[:length_shape]}" |
|
dtype = cur_attr.weight.data.dtype |
|
d_w = torch.einsum(einsum_str, up_w.to(torch.float32), down_w.to(torch.float32)).to(dtype) |
|
cur_attr.weight.data = cur_attr.weight.data + d_w * lora_scale * lora_weight |
|
|
|
|