|
from typing import Optional |
|
|
|
import torch.nn as nn |
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
from einops import rearrange |
|
|
|
from .norm_layer import RMSNorm |
|
|
|
|
|
class FluxIPAttnProcessor(nn.Module): |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
ip_hidden_states_dim=None, |
|
): |
|
super().__init__() |
|
self.norm_ip_q = RMSNorm(128, eps=1e-6) |
|
self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size) |
|
self.norm_ip_k = RMSNorm(128, eps=1e-6) |
|
self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size) |
|
|
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
emb_dict={}, |
|
subject_emb_dict={}, |
|
*args, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
|
|
ip_hidden_states = self._get_ip_hidden_states( |
|
attn, |
|
query if encoder_hidden_states is not None else query[:, emb_dict['length_encoder_hidden_states']:], |
|
subject_emb_dict.get('ip_hidden_states', None) |
|
) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
|
|
if ip_hidden_states is not None: |
|
hidden_states = hidden_states + ip_hidden_states * subject_emb_dict.get('scale', 1.0) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
return hidden_states, encoder_hidden_states |
|
else: |
|
|
|
if ip_hidden_states is not None: |
|
hidden_states[:, emb_dict['length_encoder_hidden_states']:] = \ |
|
hidden_states[:, emb_dict['length_encoder_hidden_states']:] + \ |
|
ip_hidden_states * subject_emb_dict.get('scale', 1.0) |
|
|
|
return hidden_states |
|
|
|
|
|
def _scaled_dot_product_attention(self, query, key, value, attention_mask=None, heads=None): |
|
query = rearrange(query, '(b h) l c -> b h l c', h=heads) |
|
key = rearrange(key, '(b h) l c -> b h l c', h=heads) |
|
value = rearrange(value, '(b h) l c -> b h l c', h=heads) |
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None) |
|
hidden_states = rearrange(hidden_states, 'b h l c -> (b h) l c', h=heads) |
|
hidden_states = hidden_states.to(query) |
|
return hidden_states |
|
|
|
|
|
def _get_ip_hidden_states( |
|
self, |
|
attn, |
|
img_query, |
|
ip_hidden_states, |
|
): |
|
if ip_hidden_states is None: |
|
return None |
|
|
|
if not hasattr(self, 'to_k_ip') or not hasattr(self, 'to_v_ip'): |
|
return None |
|
|
|
ip_query = self.norm_ip_q(rearrange(img_query, 'b l (h d) -> b h l d', h=attn.heads)) |
|
ip_query = rearrange(ip_query, 'b h l d -> (b h) l d') |
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_key = self.norm_ip_k(rearrange(ip_key, 'b l (h d) -> b h l d', h=attn.heads)) |
|
ip_key = rearrange(ip_key, 'b h l d -> (b h) l d') |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
ip_value = attn.head_to_batch_dim(ip_value) |
|
ip_hidden_states = self._scaled_dot_product_attention( |
|
ip_query.to(ip_value.dtype), ip_key.to(ip_value.dtype), ip_value, None, attn.heads) |
|
ip_hidden_states = ip_hidden_states.to(img_query.dtype) |
|
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) |
|
return ip_hidden_states |
|
|
|
|