File size: 9,959 Bytes
e93244b 8310116 8d1275c 5addfff 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 5addfff 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c 8310116 8d1275c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import sys, os, random, numpy as np, torch
sys.path.append("../")
from PIL import Image
import spaces
import gradio as gr
from gradio.themes import Soft # ★ NEW
from huggingface_hub import hf_hub_download
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from pipeline import InstantCharacterFluxPipeline
# ─────────────────────────────
# 1 · Runtime / device
# ─────────────────────────────
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# ─────────────────────────────
# 2 · Pre-trained weights
# ─────────────────────────────
ip_adapter_path = hf_hub_download("tencent/InstantCharacter",
"instantcharacter_ip-adapter.bin")
base_model = "black-forest-labs/FLUX.1-dev"
image_encoder_path = "google/siglip-so400m-patch14-384"
image_encoder2_path = "facebook/dinov2-giant"
birefnet_path = "ZhengPeng7/BiRefNet"
makoto_style_path = hf_hub_download("InstantX/FLUX.1-dev-LoRA-Makoto-Shinkai",
"Makoto_Shinkai_style.safetensors")
ghibli_style_path = hf_hub_download("InstantX/FLUX.1-dev-LoRA-Ghibli",
"ghibli_style.safetensors")
# ─────────────────────────────
# 3 · Pipeline init
# ─────────────────────────────
pipe = InstantCharacterFluxPipeline.from_pretrained(base_model,
torch_dtype=torch.bfloat16)
pipe.to(device)
pipe.init_adapter(
image_encoder_path=image_encoder_path,
image_encoder_2_path=image_encoder2_path,
subject_ipadapter_cfg=dict(subject_ip_adapter_path=ip_adapter_path,
nb_token=1024),
)
# ─────────────────────────────
# 4 · BiRefNet (matting)
# ─────────────────────────────
birefnet = AutoModelForImageSegmentation.from_pretrained(birefnet_path,
trust_remote_code=True)
birefnet.to(device).eval()
birefnet_tf = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
])
# ─────────────────────────────
# 5 · Helper utils
# ─────────────────────────────
def randomize_seed_fn(seed: int, randomize: bool) -> int:
return random.randint(0, MAX_SEED) if randomize else seed
def _infer_matting(img_pil):
with torch.no_grad():
inp = birefnet_tf(img_pil).unsqueeze(0).to(device)
mask = birefnet(inp)[-1].sigmoid().cpu()[0, 0].numpy()
return (mask * 255).astype(np.uint8)
def _bbox_from_mask(mask, th=128):
ys, xs = np.where(mask >= th)
if not len(xs):
return [0, 0, mask.shape[1]-1, mask.shape[0]-1]
return [xs.min(), ys.min(), xs.max(), ys.max()]
def _pad_square(arr, pad_val=255):
h, w = arr.shape[:2]
if h == w:
return arr
diff = abs(h - w)
pad_1 = diff // 2
pad_2 = diff - pad_1
if h > w:
pad = ((0, 0), (pad_1, pad_2), (0, 0))
else:
pad = ((pad_1, pad_2), (0, 0), (0, 0))
return np.pad(arr, pad, constant_values=pad_val)
def remove_bkg(img_pil: Image.Image) -> Image.Image:
mask = _infer_matting(img_pil)
x1, y1, x2, y2 = _bbox_from_mask(mask)
mask_bin = (mask >= 128).astype(np.uint8)[..., None]
img_np = np.array(img_pil)
obj = mask_bin * img_np + (1 - mask_bin) * 255
crop = obj[y1:y2+1, x1:x2+1]
return Image.fromarray(_pad_square(crop).astype(np.uint8))
def get_example():
return [
["./assets/girl.jpg",
"A girl is playing a guitar in street", 0.9, "Makoto Shinkai style"],
["./assets/boy.jpg",
"A boy is riding a bike in snow", 0.9, "Makoto Shinkai style"],
]
@spaces.GPU
def create_image(input_image, prompt, scale,
guidance_scale, num_inference_steps,
seed, style_mode):
input_image = remove_bkg(input_image)
gen = torch.manual_seed(seed)
if style_mode is None:
imgs = pipe(prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=1024, height=1024,
subject_image=input_image, subject_scale=scale,
generator=gen).images
else:
lora_path, trigger = (
(makoto_style_path, "Makoto Shinkai style")
if style_mode == "Makoto Shinkai style"
else (ghibli_style_path, "ghibli style")
)
imgs = pipe.with_style_lora(
lora_file_path=lora_path, trigger=trigger,
prompt=prompt, num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=1024, height=1024,
subject_image=input_image, subject_scale=scale,
generator=gen).images
return imgs
def run_for_examples(src, p, s, st):
return create_image(src, p, s, 3.5, 28, 123456, st)
# ─────────────────────────────
# 6 · Theme & CSS
# ─────────────────────────────
theme = Soft(primary_hue="pink",
font=[gr.themes.GoogleFont("Inter")])
css = """
body{
background:#141e30;
background:linear-gradient(135deg,#141e30,#243b55);
}
#title{
text-align:center;
font-size:2.2rem;
font-weight:700;
color:#ffffff;
padding:20px 0 6px;
}
.card{
border-radius:18px;
background:#ffffff0d;
padding:18px 22px;
backdrop-filter:blur(6px);
}
.gr-image,.gr-video{border-radius:14px}
.gr-image:hover{box-shadow:0 0 0 4px #ec4899}
footer{visibility:hidden}
"""
# ─────────────────────────────
# 7 · Gradio UI
# ─────────────────────────────
with gr.Blocks(css=css, theme=theme) as demo:
# Header
gr.Markdown("<div id='title'>InstantCharacter PLUS</div>")
gr.Markdown(
"<b>Official 🤗 Gradio demo of "
"<a href='https://instantcharacter.github.io/' target='_blank'>InstantCharacter</a></b>"
)
with gr.Tabs():
with gr.TabItem("Generate"):
with gr.Row(equal_height=True):
# ── Inputs
with gr.Column(elem_classes="card"):
image_pil = gr.Image(label="Source Image",
type="pil", height=380)
prompt = gr.Textbox(
label="Prompt",
value="A character is riding a bike in snow",
lines=2,
)
scale = gr.Slider(0, 1.5, 1.0, step=0.01, label="Scale")
style_mode = gr.Dropdown(
["None", "Makoto Shinkai style", "Ghibli style"],
label="Style",
value="Makoto Shinkai style",
)
with gr.Accordion("⚙️ Advanced Options", open=False):
guidance_scale = gr.Slider(
1, 7, 3.5, step=0.01, label="Guidance scale"
)
num_inference_steps = gr.Slider(
5, 50, 28, step=1, label="# Inference steps"
)
seed = gr.Number(123456, label="Seed", precision=0)
randomize_seed = gr.Checkbox(
label="Randomize seed", value=True
)
generate_btn = gr.Button(
"🚀 Generate",
variant="primary",
size="lg",
elem_classes="contrast",
)
# ── Outputs
with gr.Column(elem_classes="card"):
generated_image = gr.Gallery(
label="Generated Image",
show_label=True,
height="auto",
columns=[1],
)
# Connect button
generate_btn.click(
randomize_seed_fn,
[seed, randomize_seed],
seed,
queue=False,
).then(
create_image,
[
image_pil,
prompt,
scale,
guidance_scale,
num_inference_steps,
seed,
style_mode,
],
generated_image,
)
# Examples gallery
gr.Markdown("### 🔥 Quick Examples")
gr.Examples(
examples=get_example(),
inputs=[image_pil, prompt, scale, style_mode],
outputs=generated_image,
fn=run_for_examples,
cache_examples=True,
)
# ─────────────────────────────
# 8 · Launch
# ─────────────────────────────
if __name__ == "__main__":
demo.queue(max_size=10, api_open=False).launch()
|