Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,62 @@ import requests
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def process_image_classification(image):
|
15 |
model, processor, reverse_mapping, device = load_model()
|
@@ -38,6 +93,27 @@ def process_image_classification(image):
|
|
38 |
|
39 |
return visualization_rgb, card_name, confidence
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def gradio_interface():
|
42 |
gr_interface = gr.Interface(
|
43 |
fn=process_image_classification,
|
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
+
MODEL_PATH = "pytorch_model.bin"
|
13 |
+
REPO_ID = "Hayloo9838/uno-recognizer"
|
14 |
+
MAPANDSTUFF = "mapandstuff.pth"
|
15 |
+
|
16 |
+
class CLIPVisionClassifier(nn.Module):
|
17 |
+
def __init__(self, num_labels):
|
18 |
+
super().__init__()
|
19 |
+
self.vision_model = CLIPVisionModel.from_pretrained('openai/clip-vit-large-patch14',
|
20 |
+
attn_implementation="eager")
|
21 |
+
self.classifier = nn.Linear(self.vision_model.config.hidden_size, num_labels, bias=False)
|
22 |
+
self.dropout = nn.Dropout(0.1)
|
23 |
+
|
24 |
+
def forward(self, pixel_values, output_attentions=False):
|
25 |
+
outputs = self.vision_model(pixel_values, output_attentions=output_attentions)
|
26 |
+
pooled_output = outputs.pooler_output
|
27 |
+
logits = self.classifier(pooled_output)
|
28 |
+
|
29 |
+
if output_attentions:
|
30 |
+
return logits, outputs.attentions
|
31 |
+
return logits
|
32 |
+
|
33 |
+
def get_attention_map(attentions):
|
34 |
+
attention = attentions[-1]
|
35 |
+
attention = attention.mean(dim=1)
|
36 |
+
attention = attention[0, 0, 1:]
|
37 |
+
|
38 |
+
num_patches = int(np.sqrt(attention.shape[0]))
|
39 |
+
|
40 |
+
attention_map = attention.reshape(num_patches, num_patches)
|
41 |
+
|
42 |
+
attention_map = attention_map.cpu().numpy()
|
43 |
+
|
44 |
+
attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min())
|
45 |
+
return attention_map
|
46 |
+
|
47 |
+
def apply_heatmap(image, attention_map, new_size=None):
|
48 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * attention_map), cv2.COLORMAP_JET)
|
49 |
+
|
50 |
+
if isinstance(image, Image.Image):
|
51 |
+
image = np.array(image)
|
52 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
53 |
+
|
54 |
+
if new_size is not None:
|
55 |
+
image_resized = cv2.resize(image, new_size)
|
56 |
+
attention_map_resized = cv2.resize(attention_map, image_resized.shape[:2][::-1] , interpolation=cv2.INTER_LINEAR)
|
57 |
+
attention_map_resized = (attention_map_resized - attention_map_resized.min()) / (attention_map_resized.max() - attention_map_resized.min())
|
58 |
+
heatmap_resized = cv2.applyColorMap(np.uint8(255 * attention_map_resized), cv2.COLORMAP_JET)
|
59 |
+
output = cv2.addWeighted(image_resized, 0.7, heatmap_resized, 0.3, 0)
|
60 |
+
else:
|
61 |
+
attention_map_resized = cv2.resize(attention_map, image.shape[:2][::-1] , interpolation=cv2.INTER_LINEAR)
|
62 |
+
attention_map_resized = (attention_map_resized - attention_map_resized.min()) / (attention_map_resized.max() - attention_map_resized.min())
|
63 |
+
heatmap_resized = cv2.applyColorMap(np.uint8(255 * attention_map_resized), cv2.COLORMAP_JET)
|
64 |
+
output = cv2.addWeighted(image, 0.7, heatmap_resized, 0.3, 0)
|
65 |
+
|
66 |
+
|
67 |
+
return output
|
68 |
|
69 |
def process_image_classification(image):
|
70 |
model, processor, reverse_mapping, device = load_model()
|
|
|
93 |
|
94 |
return visualization_rgb, card_name, confidence
|
95 |
|
96 |
+
def load_model():
|
97 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
98 |
+
|
99 |
+
# Download model weights and label mapping from Hugging Face Hub
|
100 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_PATH)
|
101 |
+
#mapandstuff_path = hf_hub_download(repo_id=REPO_ID, filename=MAPANDSTUFF)
|
102 |
+
checkpoint = torch.load(model_path, map_location=device)
|
103 |
+
label_mapping = checkpoint['label_mapping']
|
104 |
+
reverse_mapping = {v: k for k, v in label_mapping.items()}
|
105 |
+
model = CLIPVisionClassifier(len(label_mapping))
|
106 |
+
|
107 |
+
model_state_dict = checkpoint["model_state_dict"]
|
108 |
+
model.load_state_dict(model_state_dict)
|
109 |
+
|
110 |
+
model = model.to(device)
|
111 |
+
model.eval()
|
112 |
+
|
113 |
+
processor = CLIPProcessor.from_pretrained('openai/clip-vit-large-patch14')
|
114 |
+
|
115 |
+
return model, processor, reverse_mapping, device
|
116 |
+
|
117 |
def gradio_interface():
|
118 |
gr_interface = gr.Interface(
|
119 |
fn=process_image_classification,
|