Spaces:
No application file
No application file
Create ed
Browse files
ed
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Загрузить модель и токенизатор
|
5 |
+
model_name = "HaveAI/FlareNew" # Ваша модель
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Загрузить свой набор данных (можно использовать Hugging Face Datasets или загрузить свои данные)
|
10 |
+
dataset = load_dataset("path/to/your_dataset")
|
11 |
+
|
12 |
+
# Преобразование данных для модели
|
13 |
+
def tokenize_function(examples):
|
14 |
+
return tokenizer(examples['text'], padding="max_length", truncation=True)
|
15 |
+
|
16 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
17 |
+
|
18 |
+
# Настройка аргументов для обучения
|
19 |
+
training_args = TrainingArguments(
|
20 |
+
output_dir="./results",
|
21 |
+
evaluation_strategy="epoch",
|
22 |
+
learning_rate=2e-5,
|
23 |
+
per_device_train_batch_size=8,
|
24 |
+
per_device_eval_batch_size=8,
|
25 |
+
num_train_epochs=3,
|
26 |
+
weight_decay=0.01,
|
27 |
+
)
|
28 |
+
|
29 |
+
# Использование Trainer для обучения
|
30 |
+
trainer = Trainer(
|
31 |
+
model=model,
|
32 |
+
args=training_args,
|
33 |
+
train_dataset=tokenized_datasets["train"],
|
34 |
+
eval_dataset=tokenized_datasets["validation"],
|
35 |
+
)
|
36 |
+
|
37 |
+
# Обучение модели
|
38 |
+
trainer.train()
|
39 |
+
|
40 |
+
# Сохранение обученной модели
|
41 |
+
model.save_pretrained("./flarenew_finetuned")
|
42 |
+
tokenizer.save_pretrained("./flarenew_finetuned")
|