HatmanStack
initial
f9c76fd
raw
history blame contribute delete
9.84 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
import os
import torch.cuda
import gc
from gradio_client import Client, file
from pipeline_flux_ipa import FluxPipeline
from transformer_flux import FluxTransformer2DModel
from attention_processor import IPAFluxAttnProcessor2_0
from transformers import AutoProcessor, SiglipVisionModel
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
from huggingface_hub import hf_hub_download
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
image_encoder_path = "google/siglip-so400m-patch14-384"
ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin")
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
torch_dtype=torch.bfloat16
)
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
def clear_gpu_memory():
"""Clear GPU memory and cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def resize_img(image, max_size=1024):
width, height = image.size
scaling_factor = min(max_size / width, max_size / height)
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return image.resize((new_width, new_height), Image.LANCZOS)
@spaces.GPU
def process_image(
image,
prompt: str,
scale,
seed: int,
randomize_seed: bool,
width: int,
height: int,
progress=gr.Progress(track_tqdm=True),
):
clear_gpu_memory()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image is None:
return None, seed
# Ensure image is a PIL Image
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
image = resize_img(image)
result = ip_model.generate(
pil_image=image,
prompt=prompt,
scale=scale,
width=width,
height=height,
seed=seed
)
clear_gpu_memory()
return result[0], seed
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, 2000)
return seed
def create_image_sdxl(
image_pil,
prompt: str,
n_prompt: str,
scale,
control_scale,
guidance_scale: float,
num_inference_steps: int,
seed: int,
target: str = "Load only style blocks",
):
try:
image_pil.save("./tmp.png", format="PNG")
client = Client("Hatman/InstantStyle")
result = client.predict(
image_pil=file("./tmp.png"),
prompt=prompt,
n_prompt=n_prompt,
scale=1,
control_scale=control_scale,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
seed=seed,
target=target,
api_name="/create_image"
)
return result
except Exception as e:
print(f"Error in create_image_sdxl: {str(e)}")
return None
# UI CSS
css = """
::-webkit-scrollbar {
display: none;
}
#component-0 {
max-width: 900px;
margin: 0 auto;
}
.center-markdown {
text-align: center !important;
display: flex !important;
justify-content: center !important;
width: 100% !important;
}
.gradio-row {
display: flex !important;
gap: 1rem !important;
flex-wrap: nowrap !important;
}
.gradio-column {
flex: 1 1 0 !important;
min-width: 0 !important;
}
"""
title = r"""
<h1>InstantStyle Flux & SDXL</h1>
"""
description = r"""
<p>Two different models using the IP Adapter with InstantStyle to preserve style across text-to-image generation.</p>
"""
article = r"""
---
```bibtex
@article{wang2024instantstyle,
title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
journal={arXiv preprint arXiv:2404.02733},
year={2024}
}
```
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(title, elem_classes="center-markdown")
gr.Markdown(description, elem_classes="center-markdown")
with gr.Tab("FLUX"):
with gr.Row():
with gr.Column(scale=1, min_width=300):
input_image = gr.Image(
label="Input Image",
type="pil"
)
scale = gr.Slider(
label="Image Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
run_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1, min_width=300):
result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
run_button.click(
fn=process_image,
inputs=[
input_image,
prompt,
scale,
seed,
randomize_seed,
width,
height,
],
outputs=[result, seed],
)
with gr.Tab("SDXL"):
with gr.Row():
with gr.Column():
image_pil = gr.Image(label="Style Image", type="pil")
target_radio = gr.Radio(
["Load only style blocks", "Load only layout blocks", "Load style+layout block", "Load original IP-Adapter"],
value="Load only style blocks",
label="Style mode"
)
prompt_textbox = gr.Textbox(
label="Prompt",
value="a dog, masterpiece, best quality, high quality"
)
scale_slider_sdxl = gr.Slider(
minimum=0,
maximum=2.0,
step=0.01,
value=1.0,
label="Scale"
)
with gr.Accordion(open=False, label="Advanced Options"):
control_scale_slider = gr.Slider(
minimum=0,
maximum=1.0,
step=0.01,
value=0.5,
label="Controlnet conditioning scale"
)
n_prompt_textbox = gr.Textbox(
label="Neg Prompt",
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry"
)
guidance_scale_slider = gr.Slider(
minimum=1,
maximum=15.0,
step=0.01,
value=5.0,
label="guidance scale"
)
num_inference_steps_slider = gr.Slider(
minimum=5,
maximum=50.0,
step=1.0,
value=20,
label="num inference steps"
)
seed_slider_sdxl = gr.Slider(
minimum=-1000000,
maximum=1000000,
value=1,
step=1,
label="Seed Value"
)
randomize_seed_checkbox_sdxl = gr.Checkbox(label="Randomize seed", value=True)
generate_button = gr.Button("Generate Image", variant="primary")
with gr.Column():
generated_image = gr.Image(label="Generated Image", show_label=False)
generate_button.click(
fn=randomize_seed_fn,
inputs=[seed_slider_sdxl, randomize_seed_checkbox_sdxl],
outputs=seed_slider_sdxl,
queue=False,
api_name=False,
).then(
fn=create_image_sdxl,
inputs=[
image_pil,
prompt_textbox,
n_prompt_textbox,
scale_slider_sdxl,
control_scale_slider,
guidance_scale_slider,
num_inference_steps_slider,
seed_slider_sdxl,
target_radio,
],
outputs=[generated_image]
)
gr.Markdown(article)
if __name__ == "__main__":
demo.launch(
share=True,
show_error=True,
quiet=False
)