IbrahimHasani commited on
Commit
354600e
·
1 Parent(s): fa4d0e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -26
app.py CHANGED
@@ -4,37 +4,13 @@ from io import BytesIO
4
  import gradio as gr
5
 
6
 
7
- # Initialize CLIP model and processor
8
- processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
9
- model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
10
-
11
- def image_similarity(image: Image.Image, action_prompt: str) -> bool:
12
- positive_text = f"a picture of someone {action_prompt}"
13
- negative_text = f"other"
14
-
15
- inputs = processor(
16
- text=[positive_text, negative_text],
17
- images=image,
18
- return_tensors="pt",
19
- padding=True
20
- )
21
-
22
- outputs = model(**inputs)
23
- logits_per_image = outputs.logits_per_image # image-text similarity score
24
- probs = logits_per_image.softmax(dim=1) # take the softmax to get the label probabilities
25
-
26
- # Determine if positive prompt has a higher probability than the negative prompt
27
- result = probs[0][0] > probs[0][1]
28
- return result
29
-
30
-
31
  # Initialize CLIP model and processor
32
  processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
33
  model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
34
 
35
  def image_similarity(image: Image.Image, action_prompt: str):
36
- positive_text = f"a picture of someone {action_prompt}"
37
- negative_text = f"not a picture of someone {action_prompt}"
38
 
39
  inputs = processor(
40
  text=[positive_text, negative_text],
 
4
  import gradio as gr
5
 
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Initialize CLIP model and processor
8
  processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
9
  model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
10
 
11
  def image_similarity(image: Image.Image, action_prompt: str):
12
+ positive_text = f"a picture of a person {action_prompt}"
13
+ negative_text = f"not a picture a person {action_prompt}"
14
 
15
  inputs = processor(
16
  text=[positive_text, negative_text],