Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,51 @@
|
|
1 |
-
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
2 |
from PIL import Image
|
3 |
-
import requests
|
4 |
import torch
|
5 |
-
from threading import Thread
|
6 |
import gradio as gr
|
7 |
-
from gradio import FileData
|
8 |
-
import time
|
9 |
import spaces
|
10 |
-
ckpt = "alpindale/Llama-3.2-11B-Vision-Instruct"
|
11 |
-
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
12 |
-
torch_dtype=torch.bfloat16).to("cuda")
|
13 |
-
processor = AutoProcessor.from_pretrained(ckpt)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@spaces.GPU
|
17 |
-
def
|
18 |
-
|
19 |
-
|
20 |
-
ext_buffer = f"{txt}"
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
for i, msg in enumerate(history):
|
27 |
-
if isinstance(msg[0], tuple):
|
28 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
29 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
30 |
-
images.append(Image.open(msg[0][0]).convert("RGB"))
|
31 |
-
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
32 |
-
# messages are already handled
|
33 |
-
pass
|
34 |
-
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
35 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
36 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
37 |
-
|
38 |
-
# add current message
|
39 |
-
if len(message["files"]) == 1:
|
40 |
-
|
41 |
-
if isinstance(message["files"][0], str): # examples
|
42 |
-
image = Image.open(message["files"][0]).convert("RGB")
|
43 |
-
else: # regular input
|
44 |
-
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
45 |
-
images.append(image)
|
46 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
47 |
-
else:
|
48 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
49 |
-
|
50 |
-
|
51 |
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
52 |
-
|
53 |
-
if images == []:
|
54 |
-
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
55 |
-
else:
|
56 |
-
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
57 |
-
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
58 |
-
|
59 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
60 |
-
generated_text = ""
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
for new_text in streamer:
|
67 |
-
buffer += new_text
|
68 |
-
generated_text_without_prompt = buffer
|
69 |
-
time.sleep(0.01)
|
70 |
-
yield buffer
|
71 |
-
|
72 |
-
|
73 |
-
demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[
|
74 |
-
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
|
75 |
-
200],
|
76 |
-
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
|
77 |
-
250],
|
78 |
-
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
|
79 |
-
250],
|
80 |
-
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
|
81 |
-
250],
|
82 |
-
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
|
83 |
-
250],
|
84 |
-
],
|
85 |
-
textbox=gr.MultimodalTextbox(),
|
86 |
-
additional_inputs = [gr.Slider(
|
87 |
-
minimum=10,
|
88 |
-
maximum=500,
|
89 |
-
value=250,
|
90 |
-
step=10,
|
91 |
-
label="Maximum number of new tokens to generate",
|
92 |
-
)
|
93 |
-
],
|
94 |
-
cache_examples=False,
|
95 |
-
description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
|
96 |
-
stop_btn="Stop Generation",
|
97 |
-
fill_height=True,
|
98 |
-
multimodal=True)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
demo.launch(debug=True)
|
|
|
1 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
2 |
from PIL import Image
|
|
|
3 |
import torch
|
|
|
4 |
import gradio as gr
|
|
|
|
|
5 |
import spaces
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Initialize model and processor
|
8 |
+
ckpt = "unsloth/Llama-3.2-11B-Vision-Instruct"
|
9 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
10 |
+
ckpt,
|
11 |
+
torch_dtype=torch.bfloat16
|
12 |
+
).to("cuda")
|
13 |
+
processor = AutoProcessor.from_pretrained(ckpt)
|
14 |
|
15 |
@spaces.GPU
|
16 |
+
def extract_text(image):
|
17 |
+
# Convert image to RGB
|
18 |
+
image = Image.open(image).convert("RGB")
|
|
|
19 |
|
20 |
+
# Create message structure
|
21 |
+
messages = [
|
22 |
+
{
|
23 |
+
"role": "user",
|
24 |
+
"content": [
|
25 |
+
{"type": "text", "text": "Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output"},
|
26 |
+
{"type": "image"}
|
27 |
+
]
|
28 |
+
}
|
29 |
+
]
|
30 |
|
31 |
+
# Process input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
33 |
+
inputs = processor(text=texts, images=[image], return_tensors="pt").to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Generate output
|
36 |
+
outputs = model.generate(**inputs, max_new_tokens=250)
|
37 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
return result
|
40 |
+
|
41 |
+
# Create Gradio interface
|
42 |
+
demo = gr.Interface(
|
43 |
+
fn=extract_text,
|
44 |
+
inputs=gr.Image(type="filepath", label="Upload Image"),
|
45 |
+
outputs=gr.Textbox(label="Extracted Text"),
|
46 |
+
title="Handwritten Text Extractor",
|
47 |
+
description="Upload an image containing handwritten text to extract its content.",
|
48 |
+
)
|
49 |
+
|
50 |
+
# Launch the app
|
51 |
demo.launch(debug=True)
|