Hammedalmodel commited on
Commit
e07af32
·
verified ·
1 Parent(s): a509ba3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -87
app.py CHANGED
@@ -1,100 +1,51 @@
1
- from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
2
  from PIL import Image
3
- import requests
4
  import torch
5
- from threading import Thread
6
  import gradio as gr
7
- from gradio import FileData
8
- import time
9
  import spaces
10
- ckpt = "alpindale/Llama-3.2-11B-Vision-Instruct"
11
- model = MllamaForConditionalGeneration.from_pretrained(ckpt,
12
- torch_dtype=torch.bfloat16).to("cuda")
13
- processor = AutoProcessor.from_pretrained(ckpt)
14
 
 
 
 
 
 
 
 
15
 
16
  @spaces.GPU
17
- def bot_streaming(message, history, max_new_tokens=250):
18
-
19
- txt = message["text"]
20
- ext_buffer = f"{txt}"
21
 
22
- messages= []
23
- images = []
 
 
 
 
 
 
 
 
24
 
25
-
26
- for i, msg in enumerate(history):
27
- if isinstance(msg[0], tuple):
28
- messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
29
- messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
30
- images.append(Image.open(msg[0][0]).convert("RGB"))
31
- elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
32
- # messages are already handled
33
- pass
34
- elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
35
- messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
36
- messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
37
-
38
- # add current message
39
- if len(message["files"]) == 1:
40
-
41
- if isinstance(message["files"][0], str): # examples
42
- image = Image.open(message["files"][0]).convert("RGB")
43
- else: # regular input
44
- image = Image.open(message["files"][0]["path"]).convert("RGB")
45
- images.append(image)
46
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
47
- else:
48
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
49
-
50
-
51
  texts = processor.apply_chat_template(messages, add_generation_prompt=True)
52
-
53
- if images == []:
54
- inputs = processor(text=texts, return_tensors="pt").to("cuda")
55
- else:
56
- inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
57
- streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
58
-
59
- generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
60
- generated_text = ""
61
 
62
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
63
- thread.start()
64
- buffer = ""
65
-
66
- for new_text in streamer:
67
- buffer += new_text
68
- generated_text_without_prompt = buffer
69
- time.sleep(0.01)
70
- yield buffer
71
-
72
-
73
- demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[
74
- [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
75
- 200],
76
- [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
77
- 250],
78
- [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
79
- 250],
80
- [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
81
- 250],
82
- [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
83
- 250],
84
- ],
85
- textbox=gr.MultimodalTextbox(),
86
- additional_inputs = [gr.Slider(
87
- minimum=10,
88
- maximum=500,
89
- value=250,
90
- step=10,
91
- label="Maximum number of new tokens to generate",
92
- )
93
- ],
94
- cache_examples=False,
95
- description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
96
- stop_btn="Stop Generation",
97
- fill_height=True,
98
- multimodal=True)
99
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  demo.launch(debug=True)
 
1
+ from transformers import MllamaForConditionalGeneration, AutoProcessor
2
  from PIL import Image
 
3
  import torch
 
4
  import gradio as gr
 
 
5
  import spaces
 
 
 
 
6
 
7
+ # Initialize model and processor
8
+ ckpt = "unsloth/Llama-3.2-11B-Vision-Instruct"
9
+ model = MllamaForConditionalGeneration.from_pretrained(
10
+ ckpt,
11
+ torch_dtype=torch.bfloat16
12
+ ).to("cuda")
13
+ processor = AutoProcessor.from_pretrained(ckpt)
14
 
15
  @spaces.GPU
16
+ def extract_text(image):
17
+ # Convert image to RGB
18
+ image = Image.open(image).convert("RGB")
 
19
 
20
+ # Create message structure
21
+ messages = [
22
+ {
23
+ "role": "user",
24
+ "content": [
25
+ {"type": "text", "text": "Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output"},
26
+ {"type": "image"}
27
+ ]
28
+ }
29
+ ]
30
 
31
+ # Process input
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  texts = processor.apply_chat_template(messages, add_generation_prompt=True)
33
+ inputs = processor(text=texts, images=[image], return_tensors="pt").to("cuda")
 
 
 
 
 
 
 
 
34
 
35
+ # Generate output
36
+ outputs = model.generate(**inputs, max_new_tokens=250)
37
+ result = processor.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
+ return result
40
+
41
+ # Create Gradio interface
42
+ demo = gr.Interface(
43
+ fn=extract_text,
44
+ inputs=gr.Image(type="filepath", label="Upload Image"),
45
+ outputs=gr.Textbox(label="Extracted Text"),
46
+ title="Handwritten Text Extractor",
47
+ description="Upload an image containing handwritten text to extract its content.",
48
+ )
49
+
50
+ # Launch the app
51
  demo.launch(debug=True)