Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -142,62 +142,103 @@ async def startup_event():
|
|
142 |
@app.get("/")
|
143 |
async def root():
|
144 |
return {
|
145 |
-
"message": "Welcome to the Audio Similarity API!"
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
async def compare_audio(
|
162 |
-
|
163 |
-
|
164 |
):
|
165 |
"""
|
166 |
-
|
167 |
-
The first audio is the user's recitation and the second is the professional qarri recitation.
|
168 |
"""
|
169 |
-
# Read
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
#
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
data=audio1_bytes,
|
192 |
-
mime_type=audio1.content_type,
|
193 |
-
),
|
194 |
-
types.Part.from_bytes(
|
195 |
-
data=audio2_bytes,
|
196 |
-
mime_type=audio2.content_type,
|
197 |
-
)
|
198 |
-
]
|
199 |
-
)
|
200 |
-
return {"result": response.text}
|
201 |
|
202 |
@app.post("/compare-dtw")
|
203 |
async def compare_dtw(
|
|
|
142 |
@app.get("/")
|
143 |
async def root():
|
144 |
return {
|
145 |
+
"message": "Welcome to the Audio Similarity API!"
|
146 |
+
|
147 |
+
|
148 |
+
# Load GROQ API key from environment variable
|
149 |
+
API_KEY = os.getenv("GROQ_API_KEY")
|
150 |
+
if not API_KEY:
|
151 |
+
raise RuntimeError("GROQ_API_KEY environment variable not set")
|
152 |
+
client = Groq(api_key=API_KEY)
|
153 |
+
|
154 |
+
|
155 |
+
def transcribe_audio(file_tuple: tuple) -> str:
|
156 |
+
"""
|
157 |
+
Transcribes speech from an audio file using the GROQ Whisper model.
|
158 |
+
Args:
|
159 |
+
file_tuple (tuple): (filename, file_bytes)
|
160 |
+
Returns:
|
161 |
+
str: The transcription text or error message.
|
162 |
+
"""
|
163 |
+
try:
|
164 |
+
transcription = client.audio.transcriptions.create(
|
165 |
+
file=file_tuple,
|
166 |
+
model="whisper-large-v3",
|
167 |
+
response_format="text"
|
168 |
+
)
|
169 |
+
return transcription
|
170 |
+
except Exception as e:
|
171 |
+
raise HTTPException(status_code=500, detail=f"Transcription error: {e}")
|
172 |
+
|
173 |
+
|
174 |
+
def levenshtein_similarity(text1: str, text2: str) -> float:
|
175 |
+
"""
|
176 |
+
Calculate normalized Levenshtein similarity between two texts.
|
177 |
+
Returns a score between 0 and 1.
|
178 |
+
"""
|
179 |
+
distance = Levenshtein.distance(text1, text2)
|
180 |
+
max_len = max(len(text1), len(text2))
|
181 |
+
return 1 - distance / max_len if max_len > 0 else 1.0
|
182 |
+
|
183 |
|
184 |
+
def find_differences(text_original: str, text_user: str) -> str:
|
185 |
+
"""
|
186 |
+
Identify differences between original and user transcriptions using GROQ chat.
|
187 |
+
"""
|
188 |
+
messages = [
|
189 |
+
{"role": "system", "content":
|
190 |
+
"You are a helpful assistant that finds mistakes between two texts. "
|
191 |
+
"Provide only the mistakes, no extra explanation."},
|
192 |
+
{"role": "user", "content": (
|
193 |
+
f"Original transcription: '{text_original}'\n"
|
194 |
+
f"User transcription: '{text_user}'\n"
|
195 |
+
"Explain the differences between these texts."
|
196 |
+
)}
|
197 |
+
]
|
198 |
+
try:
|
199 |
+
completion = client.chat.completions.create(
|
200 |
+
model="mistral-saba-24b",
|
201 |
+
messages=messages,
|
202 |
+
temperature=1,
|
203 |
+
max_tokens=1024,
|
204 |
+
top_p=1,
|
205 |
+
stream=False
|
206 |
+
)
|
207 |
+
return completion.choices[0].message.content
|
208 |
+
except Exception as e:
|
209 |
+
raise HTTPException(status_code=500, detail=f"Error generating explanation: {e}")
|
210 |
+
|
211 |
+
|
212 |
+
@app.post("/compare")
|
213 |
async def compare_audio(
|
214 |
+
original_audio: UploadFile = File(...),
|
215 |
+
user_audio: UploadFile = File(...)
|
216 |
):
|
217 |
"""
|
218 |
+
Endpoint to upload two audio files, transcribe, compare, and return similarity and differences.
|
|
|
219 |
"""
|
220 |
+
# Read uploaded files
|
221 |
+
original_bytes = await original_audio.read()
|
222 |
+
user_bytes = await user_audio.read()
|
223 |
+
|
224 |
+
# Transcribe
|
225 |
+
transcription_original = transcribe_audio((original_audio.filename, original_bytes))
|
226 |
+
transcription_user = transcribe_audio((user_audio.filename, user_bytes))
|
227 |
+
|
228 |
+
# Compute similarity
|
229 |
+
similarity_score = levenshtein_similarity(transcription_original, transcription_user)
|
230 |
+
|
231 |
+
# Find differences
|
232 |
+
explanation = find_differences(transcription_original, transcription_user)
|
233 |
+
|
234 |
+
# Build response
|
235 |
+
result = {
|
236 |
+
"original_transcription": transcription_original,
|
237 |
+
"user_transcription": transcription_user,
|
238 |
+
"levenshtein_similarity": round(similarity_score, 2),
|
239 |
+
"explanation_of_differences": explanation
|
240 |
+
}
|
241 |
+
return JSONResponse(content=result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
@app.post("/compare-dtw")
|
244 |
async def compare_dtw(
|