Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -8,11 +8,13 @@ from fastapi.responses import JSONResponse
|
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
from pydantic import BaseModel
|
10 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
11 |
-
from librosa.sequence import dtw
|
12 |
import tempfile
|
13 |
import uuid
|
14 |
import shutil
|
15 |
|
|
|
|
|
|
|
16 |
# Initialize FastAPI app
|
17 |
app = FastAPI(
|
18 |
title="Quran Recitation Comparison API",
|
@@ -114,11 +116,60 @@ def get_deep_embedding(audio, sr=16000):
|
|
114 |
except Exception as e:
|
115 |
raise HTTPException(status_code=500, detail=f"Error extracting embeddings: {e}")
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
# Compute DTW distance
|
118 |
def compute_dtw_distance(features1, features2):
|
119 |
"""Compute the DTW distance between two sequences of features."""
|
120 |
try:
|
121 |
-
|
|
|
122 |
distance = D[-1, -1]
|
123 |
normalized_distance = distance / len(wp)
|
124 |
return normalized_distance
|
|
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
from pydantic import BaseModel
|
10 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
|
|
11 |
import tempfile
|
12 |
import uuid
|
13 |
import shutil
|
14 |
|
15 |
+
# Disable numba JIT to avoid caching issues
|
16 |
+
os.environ["NUMBA_DISABLE_JIT"] = "1"
|
17 |
+
|
18 |
# Initialize FastAPI app
|
19 |
app = FastAPI(
|
20 |
title="Quran Recitation Comparison API",
|
|
|
116 |
except Exception as e:
|
117 |
raise HTTPException(status_code=500, detail=f"Error extracting embeddings: {e}")
|
118 |
|
119 |
+
# Custom DTW implementation to avoid librosa.sequence.dtw issues
|
120 |
+
def custom_dtw(X, Y, metric='euclidean'):
|
121 |
+
"""
|
122 |
+
Custom implementation of DTW to avoid librosa.sequence.dtw issues.
|
123 |
+
|
124 |
+
Parameters:
|
125 |
+
X, Y : numpy.ndarray
|
126 |
+
The two sequences to be aligned
|
127 |
+
metric : str, optional
|
128 |
+
The distance metric to use
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
D : numpy.ndarray
|
132 |
+
The accumulated cost matrix
|
133 |
+
wp : list
|
134 |
+
The warping path
|
135 |
+
"""
|
136 |
+
# Initialize cost matrix
|
137 |
+
n, m = len(X[0]), len(Y[0])
|
138 |
+
D = np.zeros((n+1, m+1))
|
139 |
+
D[0, :] = np.inf
|
140 |
+
D[:, 0] = np.inf
|
141 |
+
D[0, 0] = 0
|
142 |
+
|
143 |
+
# Fill cost matrix
|
144 |
+
for i in range(1, n+1):
|
145 |
+
for j in range(1, m+1):
|
146 |
+
if metric == 'euclidean':
|
147 |
+
cost = np.sqrt(np.sum((X[:, i-1] - Y[:, j-1])**2))
|
148 |
+
elif metric == 'cosine':
|
149 |
+
cost = 1 - np.dot(X[:, i-1], Y[:, j-1]) / (np.linalg.norm(X[:, i-1]) * np.linalg.norm(Y[:, j-1]))
|
150 |
+
else:
|
151 |
+
cost = np.sum(np.abs(X[:, i-1] - Y[:, j-1])) # Manhattan by default
|
152 |
+
|
153 |
+
D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1])
|
154 |
+
|
155 |
+
# Backtrack to find warping path
|
156 |
+
i, j = n, m
|
157 |
+
wp = [(i, j)]
|
158 |
+
while i > 1 or j > 1:
|
159 |
+
candidates = [(i-1, j-1), (i-1, j), (i, j-1)]
|
160 |
+
valid_candidates = [(ii, jj) for ii, jj in candidates if ii > 0 and jj > 0]
|
161 |
+
i, j = min(valid_candidates, key=lambda x: D[x[0], x[1]])
|
162 |
+
wp.append((i, j))
|
163 |
+
|
164 |
+
wp.reverse()
|
165 |
+
return D, wp
|
166 |
+
|
167 |
# Compute DTW distance
|
168 |
def compute_dtw_distance(features1, features2):
|
169 |
"""Compute the DTW distance between two sequences of features."""
|
170 |
try:
|
171 |
+
# Use custom DTW implementation instead of librosa's
|
172 |
+
D, wp = custom_dtw(features1, features2, metric='euclidean')
|
173 |
distance = D[-1, -1]
|
174 |
normalized_distance = distance / len(wp)
|
175 |
return normalized_distance
|