Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -4,22 +4,35 @@ import torch
|
|
4 |
import librosa
|
5 |
import numpy as np
|
6 |
import os
|
7 |
-
from transformers import
|
8 |
import tempfile
|
9 |
import shutil
|
10 |
import uvicorn
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Load environment variables
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
|
16 |
app = FastAPI(title="Quran Recitation Comparer API")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
class ComparisonResult(BaseModel):
|
19 |
similarity_score: float
|
20 |
interpretation: str
|
21 |
|
22 |
-
# Custom implementation of DTW
|
23 |
def custom_dtw(X, Y, metric='euclidean'):
|
24 |
"""
|
25 |
Custom Dynamic Time Warping implementation.
|
@@ -80,23 +93,27 @@ class QuranRecitationComparer:
|
|
80 |
print(f"Using device: {self.device}")
|
81 |
|
82 |
# Load model and processor once during initialization
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
# Cache for embeddings to avoid recomputation
|
96 |
self.embedding_cache = {}
|
97 |
-
print("Model loaded successfully!")
|
98 |
|
99 |
-
def load_audio(self, file_path, target_sr=16000,
|
100 |
"""Load and preprocess an audio file."""
|
101 |
if not os.path.exists(file_path):
|
102 |
raise FileNotFoundError(f"Audio file not found: {file_path}")
|
@@ -107,34 +124,69 @@ class QuranRecitationComparer:
|
|
107 |
if normalize:
|
108 |
y = librosa.util.normalize(y)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
return y
|
115 |
|
116 |
def get_deep_embedding(self, audio, sr=16000):
|
117 |
"""Extract frame-wise deep embeddings using the pretrained model."""
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
131 |
|
132 |
def compute_dtw_distance(self, features1, features2):
|
133 |
"""Compute the DTW distance between two sequences of features."""
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
def interpret_similarity(self, norm_distance):
|
140 |
"""Interpret the normalized distance value."""
|
@@ -166,14 +218,18 @@ class QuranRecitationComparer:
|
|
166 |
return self.embedding_cache[file_path]
|
167 |
|
168 |
print(f"Computing new embedding for {file_path}")
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
177 |
|
178 |
def predict(self, file_path1, file_path2):
|
179 |
"""
|
@@ -189,20 +245,25 @@ class QuranRecitationComparer:
|
|
189 |
str: Interpretation of similarity
|
190 |
"""
|
191 |
print(f"Comparing {file_path1} and {file_path2}")
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
def clear_cache(self):
|
208 |
"""Clear the embedding cache to free memory."""
|
@@ -212,6 +273,7 @@ class QuranRecitationComparer:
|
|
212 |
# Global variable for the comparer instance
|
213 |
comparer = None
|
214 |
|
|
|
215 |
@app.on_event("startup")
|
216 |
async def startup_event():
|
217 |
"""Initialize the model when the application starts."""
|
@@ -225,12 +287,16 @@ async def startup_event():
|
|
225 |
print("Model initialized and ready for predictions!")
|
226 |
except Exception as e:
|
227 |
print(f"Error initializing model: {str(e)}")
|
228 |
-
raise
|
229 |
|
230 |
@app.get("/")
|
231 |
async def root():
|
232 |
"""Root endpoint to check if the API is running."""
|
233 |
-
|
|
|
|
|
|
|
|
|
234 |
|
235 |
@app.post("/compare", response_model=ComparisonResult)
|
236 |
async def compare_files(
|
|
|
4 |
import librosa
|
5 |
import numpy as np
|
6 |
import os
|
7 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
8 |
import tempfile
|
9 |
import shutil
|
10 |
import uvicorn
|
11 |
+
from fastapi.middleware.cors import CORSMiddleware
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
# Ignore deprecation warnings
|
15 |
+
warnings.filterwarnings("ignore")
|
16 |
|
17 |
# Load environment variables
|
18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
19 |
|
20 |
app = FastAPI(title="Quran Recitation Comparer API")
|
21 |
|
22 |
+
# Add CORS middleware
|
23 |
+
app.add_middleware(
|
24 |
+
CORSMiddleware,
|
25 |
+
allow_origins=["*"],
|
26 |
+
allow_credentials=True,
|
27 |
+
allow_methods=["*"],
|
28 |
+
allow_headers=["*"],
|
29 |
+
)
|
30 |
+
|
31 |
class ComparisonResult(BaseModel):
|
32 |
similarity_score: float
|
33 |
interpretation: str
|
34 |
|
35 |
+
# Custom implementation of DTW
|
36 |
def custom_dtw(X, Y, metric='euclidean'):
|
37 |
"""
|
38 |
Custom Dynamic Time Warping implementation.
|
|
|
93 |
print(f"Using device: {self.device}")
|
94 |
|
95 |
# Load model and processor once during initialization
|
96 |
+
try:
|
97 |
+
if token:
|
98 |
+
print(f"Loading model {model_name} with token...")
|
99 |
+
self.processor = AutoProcessor.from_pretrained(model_name, token=token)
|
100 |
+
self.model = AutoModelForCTC.from_pretrained(model_name, token=token)
|
101 |
+
else:
|
102 |
+
print(f"Loading model {model_name} without token...")
|
103 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
104 |
+
self.model = AutoModelForCTC.from_pretrained(model_name)
|
105 |
+
|
106 |
+
self.model = self.model.to(self.device)
|
107 |
+
self.model.eval()
|
108 |
+
print("Model loaded successfully!")
|
109 |
+
except Exception as e:
|
110 |
+
print(f"Error loading model: {str(e)}")
|
111 |
+
raise
|
112 |
|
113 |
# Cache for embeddings to avoid recomputation
|
114 |
self.embedding_cache = {}
|
|
|
115 |
|
116 |
+
def load_audio(self, file_path, target_sr=16000, normalize=True):
|
117 |
"""Load and preprocess an audio file."""
|
118 |
if not os.path.exists(file_path):
|
119 |
raise FileNotFoundError(f"Audio file not found: {file_path}")
|
|
|
124 |
if normalize:
|
125 |
y = librosa.util.normalize(y)
|
126 |
|
127 |
+
# Trim silence using a simplified approach
|
128 |
+
trim_y = []
|
129 |
+
threshold = 0.02 # Threshold for silence detection
|
130 |
+
for i in range(len(y)):
|
131 |
+
if abs(y[i]) > threshold:
|
132 |
+
trim_y.append(y[i])
|
133 |
+
|
134 |
+
if len(trim_y) > 0:
|
135 |
+
y = np.array(trim_y)
|
136 |
+
|
137 |
return y
|
138 |
|
139 |
def get_deep_embedding(self, audio, sr=16000):
|
140 |
"""Extract frame-wise deep embeddings using the pretrained model."""
|
141 |
+
try:
|
142 |
+
inputs = self.processor(
|
143 |
+
audio,
|
144 |
+
sampling_rate=sr,
|
145 |
+
return_tensors="pt"
|
146 |
+
).input_values.to(self.device)
|
147 |
+
|
148 |
+
with torch.no_grad():
|
149 |
+
outputs = self.model(inputs, output_hidden_states=True)
|
150 |
+
|
151 |
+
hidden_states = outputs.hidden_states[-1]
|
152 |
+
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
|
153 |
+
|
154 |
+
return embedding_seq
|
155 |
+
except Exception as e:
|
156 |
+
print(f"Error in get_deep_embedding: {str(e)}")
|
157 |
+
raise
|
158 |
|
159 |
def compute_dtw_distance(self, features1, features2):
|
160 |
"""Compute the DTW distance between two sequences of features."""
|
161 |
+
# Make sure features are 2D arrays
|
162 |
+
if features1.ndim == 1:
|
163 |
+
features1 = features1.reshape(-1, 1)
|
164 |
+
if features2.ndim == 1:
|
165 |
+
features2 = features2.reshape(-1, 1)
|
166 |
+
|
167 |
+
print(f"Feature shapes: {features1.shape}, {features2.shape}")
|
168 |
+
|
169 |
+
# Use a subsample if the sequences are too long to avoid memory issues
|
170 |
+
max_length = 300
|
171 |
+
if features1.shape[0] > max_length or features2.shape[0] > max_length:
|
172 |
+
step1 = max(1, features1.shape[0] // max_length)
|
173 |
+
step2 = max(1, features2.shape[0] // max_length)
|
174 |
+
features1 = features1[::step1]
|
175 |
+
features2 = features2[::step2]
|
176 |
+
print(f"Subsampled feature shapes: {features1.shape}, {features2.shape}")
|
177 |
+
|
178 |
+
try:
|
179 |
+
D, wp = custom_dtw(X=features1, Y=features2, metric='euclidean')
|
180 |
+
distance = D[-1, -1]
|
181 |
+
normalized_distance = distance / len(wp)
|
182 |
+
return normalized_distance
|
183 |
+
except Exception as e:
|
184 |
+
print(f"Error in compute_dtw_distance: {str(e)}")
|
185 |
+
# Fallback to a basic similarity measure if DTW fails
|
186 |
+
mean_1 = np.mean(features1, axis=0)
|
187 |
+
mean_2 = np.mean(features2, axis=0)
|
188 |
+
euclidean_distance = np.sqrt(np.sum((mean_1 - mean_2) ** 2))
|
189 |
+
return euclidean_distance
|
190 |
|
191 |
def interpret_similarity(self, norm_distance):
|
192 |
"""Interpret the normalized distance value."""
|
|
|
218 |
return self.embedding_cache[file_path]
|
219 |
|
220 |
print(f"Computing new embedding for {file_path}")
|
221 |
+
try:
|
222 |
+
audio = self.load_audio(file_path)
|
223 |
+
embedding = self.get_deep_embedding(audio)
|
224 |
+
|
225 |
+
# Store in cache for future use
|
226 |
+
self.embedding_cache[file_path] = embedding
|
227 |
+
print(f"Embedding shape: {embedding.shape}")
|
228 |
+
|
229 |
+
return embedding
|
230 |
+
except Exception as e:
|
231 |
+
print(f"Error getting embedding: {str(e)}")
|
232 |
+
raise
|
233 |
|
234 |
def predict(self, file_path1, file_path2):
|
235 |
"""
|
|
|
245 |
str: Interpretation of similarity
|
246 |
"""
|
247 |
print(f"Comparing {file_path1} and {file_path2}")
|
248 |
+
try:
|
249 |
+
# Get embeddings (using cache if available)
|
250 |
+
embedding1 = self.get_embedding_for_file(file_path1)
|
251 |
+
embedding2 = self.get_embedding_for_file(file_path2)
|
252 |
+
|
253 |
+
# Compute DTW distance
|
254 |
+
print("Computing DTW distance...")
|
255 |
+
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
|
256 |
+
print(f"Normalized distance: {norm_distance}")
|
257 |
+
|
258 |
+
# Interpret results
|
259 |
+
interpretation, similarity_score = self.interpret_similarity(norm_distance)
|
260 |
+
print(f"Similarity score: {similarity_score}, Interpretation: {interpretation}")
|
261 |
+
|
262 |
+
return similarity_score, interpretation
|
263 |
+
except Exception as e:
|
264 |
+
print(f"Error in predict: {str(e)}")
|
265 |
+
# Return a fallback response in case of error
|
266 |
+
return 0, f"Error comparing files: {str(e)}"
|
267 |
|
268 |
def clear_cache(self):
|
269 |
"""Clear the embedding cache to free memory."""
|
|
|
273 |
# Global variable for the comparer instance
|
274 |
comparer = None
|
275 |
|
276 |
+
# Use the new lifespan API
|
277 |
@app.on_event("startup")
|
278 |
async def startup_event():
|
279 |
"""Initialize the model when the application starts."""
|
|
|
287 |
print("Model initialized and ready for predictions!")
|
288 |
except Exception as e:
|
289 |
print(f"Error initializing model: {str(e)}")
|
290 |
+
# Don't raise here, let the app continue to load even if model fails
|
291 |
|
292 |
@app.get("/")
|
293 |
async def root():
|
294 |
"""Root endpoint to check if the API is running."""
|
295 |
+
if comparer:
|
296 |
+
status = "active"
|
297 |
+
else:
|
298 |
+
status = "model not loaded"
|
299 |
+
return {"message": "Quran Recitation Comparer API is running", "status": status}
|
300 |
|
301 |
@app.post("/compare", response_model=ComparisonResult)
|
302 |
async def compare_files(
|