Voice_clone / app.py
Hammad112's picture
Update app.py
084f05a verified
raw
history blame
1.83 kB
import streamlit as st
import outetts
from scipy.io.wavfile import write
import tempfile
import os
from pydub import AudioSegment
# Initialize model configuration
model_config = outetts.HFModelConfig_v1(
model_path="OuteAI/OuteTTS-0.2-500M",
language="en" # Supported languages: en, zh, ja, ko
)
# Initialize the interface
interface = outetts.InterfaceHF(model_version="0.2", cfg=model_config)
# Streamlit UI
st.title("OuteTTS Speech Synthesis")
st.write("Enter text below to generate speech.")
# Sidebar for reference voice
st.sidebar.title("Voice Cloning")
reference_audio = st.sidebar.file_uploader("Upload a reference audio (any format)", type=["wav", "mp3", "ogg", "flac", "m4a"])
# Function to convert audio to WAV format
def convert_to_wav(audio_file):
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
audio = AudioSegment.from_file(audio_file)
audio.export(temp_audio.name, format="wav")
return temp_audio.name
if reference_audio:
ref_audio_path = convert_to_wav(reference_audio)
else:
ref_audio_path = None
text_input = st.text_area("Text to convert to speech:", "Hello, this is an AI-generated voice.")
if st.button("Generate Speech"):
with st.spinner("Generating audio..."):
# Generate speech with reference audio
output = interface.generate(
text=text_input,
temperature=0.1,
repetition_penalty=1.1,
max_length=4096
)
# Save the synthesized speech to a file
output_path = "output.wav"
output.save(output_path)
# Play the audio in the Streamlit app
st.audio(output_path, format="audio/wav")
st.success("Speech generated successfully!")
# Clean up temporary files
if ref_audio_path:
os.remove(ref_audio_path)