File size: 7,143 Bytes
b7db177
 
 
 
 
 
 
 
 
4545835
 
b7db177
 
4545835
 
 
b7db177
4545835
 
 
 
 
b7db177
 
 
 
4545835
 
 
b7db177
4545835
b7db177
 
4545835
b7db177
4545835
b7db177
 
 
 
4545835
b7db177
 
 
4545835
b7db177
 
 
4545835
b7db177
 
4545835
 
 
 
 
 
b7db177
 
 
 
 
 
 
 
 
4545835
 
b7db177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
 
b7db177
 
 
 
 
 
 
 
 
 
 
 
 
4545835
 
b7db177
 
 
 
 
 
4545835
 
b7db177
4545835
 
 
 
b7db177
 
 
 
 
 
 
 
 
4545835
 
 
b7db177
 
 
 
 
 
 
 
 
 
4545835
 
 
b7db177
 
 
4545835
 
 
b7db177
 
 
 
4545835
 
 
b7db177
 
 
4545835
b7db177
 
 
4545835
b7db177
 
 
4545835
b7db177
 
 
 
4545835
 
 
b7db177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
 
b7db177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# /// script
# requires-python = ">=3.12"
# dependencies = [
#     "groq==0.18.0",
#     "pandas==2.2.3",
#     "marimo",
# ]
# ///

import marimo

__generated_with = "0.11.6"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    return (mo,)


@app.cell
def _(mo):
    groq_api_key = mo.ui.text(label='Enter your groq api key here', kind='password')
    groq_api_key
    return (groq_api_key,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # LLM for NER 

        - do a [Few-shot prompting](https://huggingface.co/docs/transformers/main/en/tasks/prompting#few-shot-prompting) and repeat multiple times.

            The default prompt is:
        ```python
        Return a list of named entities in the text with your confidence score on a scale of 0 to 1 for this tag.
        The available entities are: "ADE", "Dosage", "Drug", "Duration", "Form", "Frequency", "Reason", "Route" and "Strength".

        For example:
        Text: MEDICATIONS : Lipitor , Tylenol with Codeine , Dilantin , previously on Decadron q.i.d .
        Named Entities: <start> Lipitor (Drug: 0.87), Tylenol (Drug: 0.59) <end>

        Here is your task:
        Text: The patient then developed oral sores and rash in the chest the night before admission which rapidly spread to the face , trunk , and upper extremities within the last 24 hours.
        Named Entities:

        Remember to answer in the exact form of the example.
        ```
        """
    )
    return


@app.cell
def _(mo, models):
    # define some params
    call_groq_times = mo.ui.slider(10, 100, 10, 30, label='How many times do you want to call groq')
    model_ner = mo.ui.dropdown(options=models, value="llama3-8b-8192", label="Choose a LLM")
    ner_text = mo.ui.text_area(value="", label='Type your text here or leave it to default:')
    ner_tags = mo.ui.text_area(value="", label="Type the ner tags here or leave it to default:", placeholder='e.g. Country, Person')
    checkbox_ner = mo.ui.checkbox(label=' Whether to call groq api')
    mo.vstack([mo.md("# Experiment"), mo.hstack([call_groq_times, model_ner]), mo.hstack([ner_text, ner_tags]), checkbox_ner], align='center')
    return call_groq_times, checkbox_ner, model_ner, ner_tags, ner_text


@app.cell
def _(
    call_groq_times,
    chat_completion,
    checkbox_ner,
    client,
    extract_ner_from_assistant,
    mo,
    model_ner,
    prompt_ner,
):
    # calling groq
    result = []
    if checkbox_ner.value:
        for _ in mo.status.progress_bar(range(call_groq_times.value), title='In Progress …', completion_title='Finished.'):
            try: 
                answer = chat_completion(client, prompt_ner, model_ner.value)
                result += extract_ner_from_assistant(answer)
            except Exception:
                pass
    return answer, result


@app.cell
def _(mo, pd, result):
    # transform data
    data = pd.DataFrame.from_dict(result)
    # data.to_csv('data.csv')
    # data = pl.from_dicts(result)
    # data.write_csv('data.csv')
    try:
        transformed_df = mo.ui.dataframe(data)
    except Exception:
        df = pd.read_csv('data.csv')
        transformed_df = mo.ui.dataframe(df)
    return data, df, transformed_df


@app.cell
def _(mo, transformed_df):
    _md = mo.md(
        r"""
        The results are shown below, use __+ Add__ to apply different transforms and explore more:
        ------
        """
    )
    mo.vstack([_md, transformed_df])
    return


@app.cell
async def _():
    import os
    import pandas as pd
    from functools import reduce
    import micropip
    await micropip.install("ssl")
    await micropip.install("groq")
    from groq import Groq
    return Groq, micropip, os, pd, reduce


@app.cell
def _():
    # availabel models on groq
    models = [
        "llama3-8b-8192",
        "llama3-70b-8192",
        "llama2-70b-4096",
        "mixtral-8x7b-32768",
        "gemma-7b-it",
    ]
    return (models,)


@app.cell
def _(Groq, groq_api_key):
    client = Groq(api_key=groq_api_key.value)
    return (client,)


@app.cell
def _():
    default_sentence = "The patient then developed oral sores and rash in the chest the night before admission which rapidly spread to the face , trunk , and upper extremities within the last 24 hours."
    default_tags = ["ADE", "Dosage", "Drug", "Duration", "Form", "Frequency", "Reason", "Route" and "Strength"]
    return default_sentence, default_tags


@app.cell
def _(default_sentence, default_tags, ner_tags, ner_text):
    prompt_ner = fr"""Return a list of named entities in the text with your confidence score on a scale of 0 to 1 for this tag.
    The available entities are: {ner_tags.value.split(',') if ner_tags.value else default_tags}.

    For example:
    Text: MEDICATIONS : Lipitor , Tylenol with Codeine , Dilantin , previously on Decadron q.i.d .
    Named Entities: <start> Lipitor (Drug: 0.87), Tylenol (Drug: 0.59) <end>

    Here is your task:
    Text: {ner_text.value if ner_text.value else default_sentence}
    Named Entities:

    Remember to answer in the exact form of the example.
    """
    prompt_ner
    return (prompt_ner,)


@app.cell
def _():
    def chat_completion(client, prompt, model):
        completion = client.chat.completions.create(
            messages=[
                {
                    "role": "system",
                    "content": "you will help me with some NER tasks."
                },
                # set a user message for the assistant to respond to.
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            # The language model which will generate the completion.
            model=model,
            temperature=0.5,
            max_tokens=100,
            top_p=1,
            stop='<end>',
            # If set, partial message deltas will be sent.
            stream=False,
        )
        answer = completion.choices[0].message.content
        return answer
    return (chat_completion,)


@app.cell
def _(reduce):
    def extract_ner_from_assistant(answer: str) -> list[dict]:
        # initialize a generator
        tokens = (token for token in answer.split())
        # iterate through tokens until <start>
        for token in tokens:
            if token == "<start>":
                break
        # e.g. ['oral sores (ADE: 0.98)', 'rash (ADE: 0.98)']
        records = " ".join(list(tokens)).split(",")
        # clean data
        result = map(
            lambda record: reduce(
                lambda acc, elem: {**acc, **{elem[0]: elem[1]}},
                zip(
                    ["named entity", "tag", "score"],
                    [
                        " ".join(record.split()[:-2]),
                        str(record.split()[-2])[1:-1],
                        float(str(record.split()[-1])[:-1]),
                    ],
                ),
                {},  ## initial value of accumulator
            ),
            records,
        )
        return list(result)
    return (extract_ner_from_assistant,)


if __name__ == "__main__":
    app.run()