mgyigit commited on
Commit
23efae1
·
verified ·
1 Parent(s): 39488b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -43
app.py CHANGED
@@ -261,19 +261,20 @@ For more details, see our [paper on arXiv](https://arxiv.org/abs/2302.07868).
261
  - **SNN ChEMBL**: Similarity to ChEMBL molecules (higher means more similar to known drug-like compounds)
262
  - **SNN Real Inhibitors**: Similarity to known drugs (higher means more similar to approved drugs)
263
  """)
264
-
 
 
 
 
 
 
 
 
265
  # Use Gradio Tabs to separate the two modes.
266
  with gr.Tabs():
267
  with gr.TabItem("Classical Generation"):
268
  with gr.Row():
269
  with gr.Column(scale=1):
270
- model_name = gr.Radio(
271
- choices=("DrugGEN-AKT1", "DrugGEN-CDK2", "DrugGEN-NoTarget"),
272
- value="DrugGEN-AKT1",
273
- label="Select Target Model",
274
- info="Choose which protein target or general model to use for molecule generation"
275
- )
276
-
277
  num_molecules = gr.Slider(
278
  minimum=10,
279
  maximum=200,
@@ -294,25 +295,6 @@ For more details, see our [paper on arXiv](https://arxiv.org/abs/2302.07868).
294
  variant="primary",
295
  size="lg"
296
  )
297
- with gr.Column(scale=2):
298
- basic_metrics_df = gr.Dataframe(
299
- headers=["Validity", "Uniqueness", "Novelty (Train)", "Novelty (Inference)", "Novelty (Real Inhibitors)", "Runtime (s)"],
300
- elem_id="basic-metrics"
301
- )
302
-
303
- advanced_metrics_df = gr.Dataframe(
304
- headers=["QED", "SA Score", "Internal Diversity", "SNN (ChEMBL)", "SNN (Real Inhibitors)", "Average Length"],
305
- elem_id="advanced-metrics"
306
- )
307
-
308
- file_download = gr.File(
309
- label="Download All Generated Molecules (SMILES format)"
310
- )
311
-
312
- image_output = gr.Image(
313
- label="Structures of Randomly Selected Generated Molecules",
314
- elem_id="molecule_display"
315
- )
316
 
317
  with gr.TabItem("Custom Input SMILES"):
318
  with gr.Row():
@@ -334,25 +316,22 @@ For more details, see our [paper on arXiv](https://arxiv.org/abs/2302.07868).
334
  variant="primary",
335
  size="lg"
336
  )
337
- with gr.Column(scale=2):
338
- basic_metrics_df_custom = gr.Dataframe(
339
- headers=["Validity", "Uniqueness", "Novelty (Train)", "Novelty (Inference)", "Novelty (Real Inhibitors)", "Runtime (s)"],
340
- elem_id="basic-metrics-custom"
341
- )
 
342
 
343
- advanced_metrics_df_custom = gr.Dataframe(
344
- headers=["QED", "SA Score", "Internal Diversity", "SNN (ChEMBL)", "SNN (Real Inhibitors)", "Average Length"],
345
- elem_id="advanced-metrics-custom"
346
- )
347
 
348
- file_download_custom = gr.File(
349
- label="Download All Molecules (SMILES format)"
350
- )
351
 
352
- image_output_custom = gr.Image(
353
- label="Structures of Randomly Selected Molecules",
354
- elem_id="molecule_display_custom"
355
- )
356
 
357
  gr.Markdown("### Created by the HUBioDataLab | [GitHub](https://github.com/HUBioDataLab/DrugGEN) | [Paper](https://arxiv.org/abs/2302.07868)")
358
 
 
261
  - **SNN ChEMBL**: Similarity to ChEMBL molecules (higher means more similar to known drug-like compounds)
262
  - **SNN Real Inhibitors**: Similarity to known drugs (higher means more similar to approved drugs)
263
  """)
264
+ with gr.Row():
265
+ with gr.Column(scale=1):
266
+ model_name = gr.Radio(
267
+ choices=("DrugGEN-AKT1", "DrugGEN-CDK2", "DrugGEN-NoTarget"),
268
+ value="DrugGEN-AKT1",
269
+ label="Select Target Model",
270
+ info="Choose which protein target or general model to use for molecule generation"
271
+ )
272
+
273
  # Use Gradio Tabs to separate the two modes.
274
  with gr.Tabs():
275
  with gr.TabItem("Classical Generation"):
276
  with gr.Row():
277
  with gr.Column(scale=1):
 
 
 
 
 
 
 
278
  num_molecules = gr.Slider(
279
  minimum=10,
280
  maximum=200,
 
295
  variant="primary",
296
  size="lg"
297
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
 
299
  with gr.TabItem("Custom Input SMILES"):
300
  with gr.Row():
 
316
  variant="primary",
317
  size="lg"
318
  )
319
+
320
+ with gr.Column(scale=2):
321
+ basic_metrics_df = gr.Dataframe(
322
+ headers=["Validity", "Uniqueness", "Novelty (Train)", "Novelty (Inference)", "Novelty (Real Inhibitors)", "Runtime (s)"],
323
+ elem_id="basic-metrics"
324
+ )
325
 
326
+ advanced_metrics_df = gr.Dataframe(
327
+ headers=["QED", "SA Score", "Internal Diversity", "SNN (ChEMBL)", "SNN (Real Inhibitors)", "Average Length"],
328
+ elem_id="advanced-metrics"
329
+ )
330
 
331
+ file_download = gr.File(label="Download All Generated Molecules (SMILES format)")
 
 
332
 
333
+ image_output = gr.Image(label="Structures of Randomly Selected Generated Molecules",
334
+ elem_id="molecule_display")
 
 
335
 
336
  gr.Markdown("### Created by the HUBioDataLab | [GitHub](https://github.com/HUBioDataLab/DrugGEN) | [Paper](https://arxiv.org/abs/2302.07868)")
337