|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch._dynamo |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import xformers |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import UNet2DConditionLoadersMixin |
|
from diffusers.models.attention import BasicTransformerBlock |
|
from diffusers.models.attention_processor import ( |
|
CROSS_ATTENTION_PROCESSORS, |
|
AttentionProcessor, |
|
AttnProcessor, |
|
) |
|
from diffusers.models.embeddings import PatchEmbed, TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.unets.unet_3d_blocks import UNetMidBlockSpatioTemporal |
|
from diffusers.models.unets.unet_3d_blocks import get_down_block as get_down_block_3d |
|
from diffusers.models.unets.unet_3d_blocks import get_up_block as get_up_block_3d |
|
from diffusers.utils import BaseOutput, is_torch_version |
|
from einops import rearrange |
|
from timm.layers.drop import DropPath |
|
from timm.layers.mlp import Mlp |
|
from torchvision.models import resnet18 |
|
|
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
|
|
|
|
class SegDiTTransformer2DModel(ModelMixin, ConfigMixin): |
|
r""" |
|
A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748). |
|
|
|
Parameters: |
|
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (int, optional, defaults to 72): The number of channels in each head. |
|
in_channels (int, defaults to 4): The number of channels in the input. |
|
out_channels (int, optional): |
|
The number of channels in the output. Specify this parameter if the output channel number differs from the |
|
input. |
|
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. |
|
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. |
|
norm_num_groups (int, optional, defaults to 32): |
|
Number of groups for group normalization within Transformer blocks. |
|
attention_bias (bool, optional, defaults to True): |
|
Configure if the Transformer blocks' attention should contain a bias parameter. |
|
sample_size (int, defaults to 32): |
|
The width of the latent images. This parameter is fixed during training. |
|
patch_size (int, defaults to 2): |
|
Size of the patches the model processes, relevant for architectures working on non-sequential data. |
|
activation_fn (str, optional, defaults to "gelu-approximate"): |
|
Activation function to use in feed-forward networks within Transformer blocks. |
|
num_embeds_ada_norm (int, optional, defaults to 1000): |
|
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during |
|
inference. |
|
upcast_attention (bool, optional, defaults to False): |
|
If true, upcasts the attention mechanism dimensions for potentially improved performance. |
|
norm_type (str, optional, defaults to "ada_norm_zero"): |
|
Specifies the type of normalization used, can be 'ada_norm_zero'. |
|
norm_elementwise_affine (bool, optional, defaults to False): |
|
If true, enables element-wise affine parameters in the normalization layers. |
|
norm_eps (float, optional, defaults to 1e-5): |
|
A small constant added to the denominator in normalization layers to prevent division by zero. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 72, |
|
in_channels: int = 4, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 28, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
attention_bias: bool = True, |
|
sample_size: int = 32, |
|
patch_size: int = 2, |
|
activation_fn: str = "gelu-approximate", |
|
num_embeds_ada_norm: Optional[int] = 1000, |
|
upcast_attention: bool = False, |
|
norm_type: str = "ada_norm_zero", |
|
norm_elementwise_affine: bool = False, |
|
norm_eps: float = 1e-5, |
|
): |
|
super().__init__() |
|
|
|
|
|
if norm_type != "ada_norm_zero": |
|
raise NotImplementedError( |
|
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." |
|
) |
|
elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." |
|
) |
|
|
|
|
|
self.attention_head_dim = attention_head_dim |
|
self.inner_dim = ( |
|
self.config.num_attention_heads * self.config.attention_head_dim |
|
) |
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.height = self.config.sample_size |
|
self.width = self.config.sample_size |
|
|
|
self.patch_size = self.config.patch_size |
|
self.pos_embed = PatchEmbed( |
|
height=self.config.sample_size, |
|
width=self.config.sample_size, |
|
patch_size=self.config.patch_size, |
|
in_channels=self.config.in_channels, |
|
embed_dim=self.inner_dim, |
|
) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
self.inner_dim, |
|
self.config.num_attention_heads, |
|
self.config.attention_head_dim, |
|
dropout=self.config.dropout, |
|
activation_fn=self.config.activation_fn, |
|
num_embeds_ada_norm=self.config.num_embeds_ada_norm, |
|
attention_bias=self.config.attention_bias, |
|
upcast_attention=self.config.upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=self.config.norm_elementwise_affine, |
|
norm_eps=self.config.norm_eps, |
|
) |
|
for _ in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
|
|
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) |
|
self.proj_out_2 = nn.Linear( |
|
self.inner_dim, |
|
self.config.patch_size * self.config.patch_size * self.out_channels, |
|
) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: Optional[torch.LongTensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
segmentation: Optional[torch.LongTensor] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`DiTTransformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): |
|
Input `hidden_states`. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
if segmentation is not None: |
|
hidden_states = torch.cat([hidden_states, segmentation], dim=1) |
|
|
|
|
|
height, width = ( |
|
hidden_states.shape[-2] // self.patch_size, |
|
hidden_states.shape[-1] // self.patch_size, |
|
) |
|
hidden_states = self.pos_embed(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
None, |
|
None, |
|
None, |
|
timestep, |
|
cross_attention_kwargs, |
|
class_labels, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=class_labels, |
|
) |
|
|
|
|
|
conditioning = self.transformer_blocks[0].norm1.emb( |
|
timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) |
|
hidden_states = ( |
|
self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] |
|
) |
|
hidden_states = self.proj_out_2(hidden_states) |
|
|
|
|
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=( |
|
-1, |
|
height, |
|
width, |
|
self.patch_size, |
|
self.patch_size, |
|
self.out_channels, |
|
) |
|
) |
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=( |
|
-1, |
|
self.out_channels, |
|
height * self.patch_size, |
|
width * self.patch_size, |
|
) |
|
) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|
|
|
def get_2d_sincos_pos_embed( |
|
embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None |
|
): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
if not isinstance(grid_size, tuple): |
|
grid_size = (grid_size, grid_size) |
|
|
|
grid_h = np.arange(grid_size[0], dtype=np.float32) / scale |
|
grid_w = np.arange(grid_size[1], dtype=np.float32) / scale |
|
if base_size is not None: |
|
grid_h *= base_size / grid_size[0] |
|
grid_w *= base_size / grid_size[1] |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token and extra_tokens > 0: |
|
pos_embed = np.concatenate( |
|
[np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 |
|
) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0): |
|
pos = np.arange(0, length)[..., None] / scale |
|
return get_1d_sincos_pos_embed_from_grid(embed_dim, pos) |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float64) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
def t2i_modulate(x, shift, scale): |
|
return x * (1 + scale) + shift |
|
|
|
|
|
class PatchEmbed3D(nn.Module): |
|
"""Video to Patch Embedding. |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: (2,4,4). |
|
in_chans (int): Number of input video channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__( |
|
self, |
|
patch_size=(2, 4, 4), |
|
in_chans=3, |
|
embed_dim=96, |
|
norm_layer=None, |
|
flatten=True, |
|
): |
|
super().__init__() |
|
self.patch_size = patch_size |
|
self.flatten = flatten |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv3d( |
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size |
|
) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, D, H, W = x.size() |
|
if W % self.patch_size[2] != 0: |
|
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) |
|
if H % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) |
|
if D % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
D, Wh, Ww = x.size(2), x.size(3), x.size(4) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
enable_flashattn: bool = False, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
if enable_flashattn: |
|
print( |
|
"[WARNING] FlashAttention cannot be used. Set enable_flashattn to False." |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, N, C = x.shape |
|
qkv = self.qkv(x) |
|
qkv_shape = (B, N, 3, self.num_heads, self.head_dim) |
|
qkv_permute_shape = (2, 0, 3, 1, 4) |
|
qkv = qkv.view(qkv_shape).permute(qkv_permute_shape) |
|
q, k, v = qkv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
dtype = q.dtype |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.to(torch.float32) |
|
attn = attn.softmax(dim=-1) |
|
attn = attn.to(dtype) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x_output_shape = (B, N, C) |
|
x = x.reshape(x_output_shape) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class MultiHeadCrossAttention(nn.Module): |
|
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): |
|
super(MultiHeadCrossAttention, self).__init__() |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
|
|
self.q_linear = nn.Linear(d_model, d_model) |
|
self.kv_linear = nn.Linear(d_model, d_model * 2) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(d_model, d_model) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
@torch._dynamo.disable |
|
def forward(self, x, cond, mask=None): |
|
|
|
B, N, C = x.shape |
|
|
|
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) |
|
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) |
|
k, v = kv.unbind(2) |
|
|
|
attn_bias = None |
|
if mask is not None: |
|
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) |
|
x = xformers.ops.memory_efficient_attention( |
|
q, k, v, p=self.attn_drop.p, attn_bias=attn_bias |
|
) |
|
|
|
x = x.view(B, -1, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32) |
|
/ half |
|
) |
|
freqs = freqs.to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat( |
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 |
|
) |
|
return embedding |
|
|
|
def forward(self, t, dtype): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
if t_freq.dtype != dtype: |
|
t_freq = t_freq.to(dtype) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class CaptionEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
hidden_size, |
|
uncond_prob, |
|
act_layer=nn.GELU(approximate="tanh"), |
|
token_num=120, |
|
): |
|
super().__init__() |
|
self.y_proj = Mlp( |
|
in_features=in_channels, |
|
hidden_features=hidden_size, |
|
out_features=hidden_size, |
|
act_layer=act_layer, |
|
drop=0, |
|
) |
|
self.register_buffer( |
|
"y_embedding", |
|
nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5), |
|
) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return caption |
|
|
|
@torch._dynamo.disable |
|
def forward(self, caption, train, force_drop_ids=None): |
|
if train: |
|
assert caption.shape[2:] == self.y_embedding.shape |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
caption = self.token_drop(caption, force_drop_ids) |
|
caption = self.y_proj(caption) |
|
return caption |
|
|
|
|
|
class T2IFinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
|
|
def __init__(self, hidden_size, num_patch, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) |
|
self.scale_shift_table = nn.Parameter( |
|
torch.randn(2, hidden_size) / hidden_size**0.5 |
|
) |
|
self.out_channels = out_channels |
|
|
|
def forward(self, x, t): |
|
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) |
|
x = t2i_modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class STDiTBlock(nn.Module): |
|
""" |
|
STDiT: Spatio-Temporal Diffusion Transformer. |
|
|
|
Args: |
|
hidden_size (int): Hidden size of the model. |
|
num_heads (int): Number of attention heads. |
|
d_s (int): Spatial patch size. |
|
d_t (int): Temporal patch size. |
|
mlp_ratio (float): Ratio of hidden to mlp hidden size. |
|
drop_path (float): Drop path rate. |
|
enable_flashattn (bool): Enable FlashAttention. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size, |
|
num_heads, |
|
d_s=None, |
|
d_t=None, |
|
mlp_ratio=4.0, |
|
drop_path=0.0, |
|
enable_flashattn=False, |
|
uncond=False, |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.enable_flashattn = enable_flashattn |
|
|
|
self.attn_cls = Attention |
|
self.mha_cls = MultiHeadCrossAttention |
|
|
|
self.norm1 = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False) |
|
self.attn = self.attn_cls( |
|
hidden_size, |
|
num_heads=num_heads, |
|
qkv_bias=True, |
|
enable_flashattn=False, |
|
) |
|
if uncond: |
|
self.cross_attn = self.mha_cls(hidden_size, num_heads) |
|
self.norm2 = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False) |
|
self.mlp = Mlp( |
|
in_features=hidden_size, |
|
hidden_features=int(hidden_size * mlp_ratio), |
|
act_layer=approx_gelu, |
|
drop=0, |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.scale_shift_table = nn.Parameter( |
|
torch.randn(6, hidden_size) / hidden_size**0.5 |
|
) |
|
|
|
|
|
self.d_s = d_s |
|
self.d_t = d_t |
|
|
|
self.attn_temp = self.attn_cls( |
|
hidden_size, |
|
num_heads=num_heads, |
|
qkv_bias=True, |
|
enable_flashattn=self.enable_flashattn, |
|
) |
|
|
|
def forward(self, x, t, y=None, mask=None, tpe=None): |
|
""" |
|
Args: |
|
x (torch.Tensor): noisy input tensor of shape [B, N, C] |
|
y (torch.Tensor): conditional input tensor of shape [B, N, C] |
|
t (torch.Tensor): input tensor; of shape [B, C] |
|
mask (torch.Tensor): input tensor; of shape [B, N] |
|
tpe (torch.Tensor): input tensor; of shape [B, C] |
|
""" |
|
B, N, C = x.shape |
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + t.reshape(B, 6, -1) |
|
).chunk(6, dim=1) |
|
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa) |
|
|
|
|
|
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=self.d_t, S=self.d_s) |
|
x_s = self.attn(x_s) |
|
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=self.d_t, S=self.d_s) |
|
x = x + self.drop_path(gate_msa * x_s) |
|
|
|
|
|
x_t = rearrange(x, "B (T S) C -> (B S) T C", T=self.d_t, S=self.d_s) |
|
if tpe is not None: |
|
x_t = x_t + tpe |
|
x_t = self.attn_temp(x_t) |
|
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=self.d_t, S=self.d_s) |
|
x = x + self.drop_path(gate_msa * x_t) |
|
|
|
|
|
if y is not None: |
|
x = x + self.cross_attn(x, y, mask) |
|
|
|
|
|
x = x + self.drop_path( |
|
gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)) |
|
) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class STDiT(nn.Module): |
|
def __init__( |
|
self, |
|
input_size=(1, 32, 32), |
|
in_channels=4, |
|
out_channels=4, |
|
patch_size=(1, 2, 2), |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
class_dropout_prob=0.1, |
|
drop_path=0.0, |
|
no_temporal_pos_emb=False, |
|
caption_channels=4096, |
|
model_max_length=120, |
|
space_scale=1.0, |
|
time_scale=1.0, |
|
enable_flashattn=False, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_size = hidden_size |
|
self.patch_size = patch_size |
|
self.input_size = input_size |
|
num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)]) |
|
self.num_patches = num_patches |
|
self.num_temporal = input_size[0] // patch_size[0] |
|
self.num_spatial = num_patches // self.num_temporal |
|
self.num_heads = num_heads |
|
self.no_temporal_pos_emb = no_temporal_pos_emb |
|
self.depth = depth |
|
self.mlp_ratio = mlp_ratio |
|
self.enable_flashattn = enable_flashattn |
|
self.space_scale = space_scale |
|
self.time_scale = time_scale |
|
|
|
if caption_channels == 0: |
|
print("Warning: caption_channels is 0, disabling text conditioning.") |
|
|
|
self.register_buffer("pos_embed", self.get_spatial_pos_embed()) |
|
self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed()) |
|
|
|
self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size) |
|
self.t_embedder = TimestepEmbedder(hidden_size) |
|
self.t_block = nn.Sequential( |
|
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) |
|
) |
|
self.y_embedder = ( |
|
CaptionEmbedder( |
|
in_channels=caption_channels, |
|
hidden_size=hidden_size, |
|
uncond_prob=class_dropout_prob, |
|
act_layer=approx_gelu, |
|
token_num=model_max_length, |
|
) |
|
if caption_channels > 0 |
|
else None |
|
) |
|
|
|
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] |
|
self.blocks = nn.ModuleList( |
|
[ |
|
STDiTBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=self.mlp_ratio, |
|
drop_path=drop_path[i], |
|
enable_flashattn=self.enable_flashattn, |
|
d_t=self.num_temporal, |
|
d_s=self.num_spatial, |
|
uncond=(caption_channels > 0), |
|
) |
|
for i in range(self.depth) |
|
] |
|
) |
|
self.final_layer = T2IFinalLayer( |
|
hidden_size, np.prod(self.patch_size), self.out_channels |
|
) |
|
|
|
|
|
self.initialize_weights() |
|
self.initialize_temporal() |
|
|
|
|
|
self.sp_rank = None |
|
|
|
def forward(self, x, timestep, y=None, mask=None, cond_image=None): |
|
""" |
|
Forward pass of STDiT. |
|
Args: |
|
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W] |
|
timestep (torch.Tensor): diffusion time steps; of shape [B] |
|
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C] |
|
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token] |
|
|
|
Returns: |
|
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W] |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
x = self.x_embedder(x) |
|
|
|
x = rearrange( |
|
x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial |
|
) |
|
x = x + self.pos_embed |
|
x = rearrange(x, "B T S C -> B (T S) C") |
|
|
|
|
|
|
|
|
|
|
|
t = self.t_embedder(timestep, dtype=x.dtype) |
|
t0 = self.t_block(t) |
|
if self.y_embedder is not None and y is not None: |
|
y = self.y_embedder(y, self.training) |
|
|
|
if mask is not None: |
|
if mask.shape[0] != y.shape[0]: |
|
mask = mask.repeat(y.shape[0] // mask.shape[0], 1) |
|
mask = mask.squeeze(1).squeeze(1) |
|
y = ( |
|
y.squeeze(1) |
|
.masked_select(mask.unsqueeze(-1) != 0) |
|
.view(1, -1, x.shape[-1]) |
|
) |
|
y_lens = mask.sum(dim=1).tolist() |
|
else: |
|
y_lens = [y.shape[2]] * y.shape[0] |
|
y = y.squeeze(1).view(1, -1, x.shape[-1]) |
|
else: |
|
y = None |
|
y_lens = None |
|
|
|
|
|
for i, block in enumerate(self.blocks): |
|
if i == 0: |
|
tpe = self.pos_embed_temporal |
|
else: |
|
tpe = None |
|
x = block(x=x, t=t0, y=y, mask=y_lens, tpe=tpe) |
|
|
|
|
|
|
|
x = self.final_layer(x, t) |
|
x = self.unpatchify(x) |
|
|
|
return x |
|
|
|
def unpatchify(self, x): |
|
""" |
|
Args: |
|
x (torch.Tensor): of shape [B, N, C] |
|
|
|
Return: |
|
x (torch.Tensor): of shape [B, C_out, T, H, W] |
|
""" |
|
|
|
N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)] |
|
T_p, H_p, W_p = self.patch_size |
|
x = rearrange( |
|
x, |
|
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)", |
|
N_t=N_t, |
|
N_h=N_h, |
|
N_w=N_w, |
|
T_p=T_p, |
|
H_p=H_p, |
|
W_p=W_p, |
|
C_out=self.out_channels, |
|
) |
|
return x |
|
|
|
def unpatchify_old(self, x): |
|
c = self.out_channels |
|
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] |
|
pt, ph, pw = self.patch_size |
|
|
|
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) |
|
x = rearrange(x, "n t h w r p q c -> n c t r h p w q") |
|
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) |
|
return imgs |
|
|
|
def get_spatial_pos_embed(self, grid_size=None): |
|
if grid_size is None: |
|
grid_size = self.input_size[1:] |
|
pos_embed = get_2d_sincos_pos_embed( |
|
self.hidden_size, |
|
(grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]), |
|
scale=self.space_scale, |
|
) |
|
pos_embed = ( |
|
torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) |
|
) |
|
return pos_embed |
|
|
|
def get_temporal_pos_embed(self): |
|
pos_embed = get_1d_sincos_pos_embed( |
|
self.hidden_size, |
|
self.input_size[0] // self.patch_size[0], |
|
scale=self.time_scale, |
|
) |
|
pos_embed = ( |
|
torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) |
|
) |
|
return pos_embed |
|
|
|
def freeze_not_temporal(self): |
|
for n, p in self.named_parameters(): |
|
if "attn_temp" not in n: |
|
p.requires_grad = False |
|
|
|
def freeze_text(self): |
|
for n, p in self.named_parameters(): |
|
if "cross_attn" in n: |
|
p.requires_grad = False |
|
|
|
def initialize_temporal(self): |
|
for block in self.blocks: |
|
nn.init.constant_(block.attn_temp.proj.weight, 0) |
|
nn.init.constant_(block.attn_temp.proj.bias, 0) |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
|
|
self.apply(_basic_init) |
|
|
|
|
|
w = self.x_embedder.proj.weight.data |
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
nn.init.normal_(self.t_block[1].weight, std=0.02) |
|
|
|
|
|
if self.y_embedder is not None: |
|
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) |
|
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.cross_attn.proj.weight, 0) |
|
nn.init.constant_(block.cross_attn.proj.bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
|
|
@dataclass |
|
class DiffuserSTDiTModelOutput(BaseOutput): |
|
""" |
|
The output of [`DiffuserSTDiT`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, num_frames, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): |
|
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability |
|
distributions for the unnoised latent pixels. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class DiffuserSTDiT(ModelMixin, ConfigMixin): |
|
""" |
|
STDiT: Spatio-Temporal Diffusion Transformer. |
|
|
|
Parameters: |
|
input_size (tuple): Input size of the video. Default: (1, 32, 32). |
|
in_channels (int): Number of input video channels. Default: 4. |
|
out_channels (int): Number of output video channels. Default: 4. |
|
patch_size (tuple): Patch token size. Default: (1, 2, 2). |
|
hidden_size (int): Hidden size of the model. Default: 1152. |
|
depth (int): Number of layers. Default: 28. |
|
num_heads (int): Number of attention heads. Default: 16. |
|
mlp_ratio (float): Ratio of hidden to mlp hidden size. Default: 4.0. |
|
class_dropout_prob (float): Probability of dropping class tokens. Default: 0.1. |
|
drop_path (float): Drop path rate. Default: 0.0. |
|
no_temporal_pos_emb (bool): Disable temporal positional embeddings. Default: False. |
|
caption_channels (int): Number of caption channels. Default: 4096. |
|
model_max_length (int): Maximum length of the model. Default: 120. |
|
space_scale (float): Spatial scale. Default: 1.0. |
|
time_scale (float): Temporal scale. Default: 1.0. |
|
enable_flashattn (bool): Enable FlashAttention. Default: False. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
input_size=(1, 32, 32), |
|
in_channels=4, |
|
out_channels=4, |
|
patch_size=(1, 2, 2), |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
class_dropout_prob=0.1, |
|
drop_path=0.0, |
|
no_temporal_pos_emb=False, |
|
caption_channels=4096, |
|
model_max_length=120, |
|
space_scale=1.0, |
|
time_scale=1.0, |
|
enable_flashattn=False, |
|
): |
|
|
|
super().__init__() |
|
|
|
self.model = STDiT( |
|
input_size=input_size, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
patch_size=patch_size, |
|
hidden_size=hidden_size, |
|
depth=depth, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
class_dropout_prob=class_dropout_prob, |
|
drop_path=drop_path, |
|
no_temporal_pos_emb=no_temporal_pos_emb, |
|
caption_channels=caption_channels, |
|
model_max_length=model_max_length, |
|
space_scale=space_scale, |
|
time_scale=time_scale, |
|
enable_flashattn=enable_flashattn, |
|
) |
|
|
|
def forward( |
|
self, |
|
x, |
|
timestep, |
|
encoder_hidden_states=None, |
|
cond_image=None, |
|
mask=None, |
|
return_dict=True, |
|
*args, |
|
**kwargs, |
|
): |
|
""" |
|
Args: |
|
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W] |
|
timestep (torch.Tensor): diffusion time steps; of shape [B] |
|
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C] |
|
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token] |
|
return_dict (bool): return a dictionary or not. Default: True. |
|
""" |
|
if type(timestep) == int or timestep.ndim == 0: |
|
timestep = torch.ones(x.shape[0], device=x.device) * timestep |
|
|
|
encoder_hidden_states = ( |
|
encoder_hidden_states.unsqueeze(1) |
|
if encoder_hidden_states is not None |
|
else None |
|
) |
|
|
|
if cond_image is not None: |
|
assert ( |
|
x.shape == cond_image.shape |
|
), "x and cond_image must have the same shape" |
|
x = torch.cat([x, cond_image], dim=1) |
|
|
|
output = self.model(x, timestep, encoder_hidden_states, mask) |
|
if not return_dict: |
|
return (output,) |
|
|
|
return DiffuserSTDiTModelOutput(sample=output) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch._dynamo.disable |
|
@dataclass |
|
class UNetSTICOutput(BaseOutput): |
|
""" |
|
The output of [`UNetSpatioTemporalConditionModel`]. |
|
|
|
Args: |
|
sample (`torch.Tensor` of shape `(batch_size, num_frames, num_channels, height, width)`): |
|
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. |
|
""" |
|
|
|
sample: torch.Tensor = None |
|
|
|
|
|
class UNetSTIC(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
r""" |
|
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and |
|
returns a sample shaped output. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. |
|
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): |
|
The tuple of downsample blocks to use. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): |
|
The tuple of upsample blocks to use. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
addition_time_embed_dim: (`int`, defaults to 256): |
|
Dimension to to encode the additional time ids. |
|
projection_class_embeddings_input_dim (`int`, defaults to 768): |
|
The dimension of the projection of encoded `added_time_ids`. |
|
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. |
|
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): |
|
The dimension of the cross attention features. |
|
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): |
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for |
|
[`~models.unets.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], |
|
[`~models.unets.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], |
|
[`~models.unets.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. |
|
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): |
|
The number of attention heads. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 8, |
|
out_channels: int = 4, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"DownBlockSpatioTemporal", |
|
), |
|
up_block_types: Tuple[str] = ( |
|
"UpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
), |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
addition_time_embed_dim: int = 256, |
|
projection_class_embeddings_input_dim: int = 768, |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1024, |
|
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, |
|
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20), |
|
num_frames: int = 25, |
|
): |
|
super().__init__() |
|
|
|
self.sample_size = sample_size |
|
|
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len( |
|
down_block_types |
|
): |
|
raise ValueError( |
|
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len( |
|
down_block_types |
|
): |
|
raise ValueError( |
|
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(layers_per_block, int) and len(layers_per_block) != len( |
|
down_block_types |
|
): |
|
raise ValueError( |
|
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
|
|
time_embed_dim = block_out_channels[0] * 4 |
|
|
|
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) |
|
timestep_input_dim = block_out_channels[0] |
|
|
|
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(num_attention_heads, int): |
|
num_attention_heads = (num_attention_heads,) * len(down_block_types) |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) |
|
|
|
if isinstance(layers_per_block, int): |
|
layers_per_block = [layers_per_block] * len(down_block_types) |
|
|
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * len( |
|
down_block_types |
|
) |
|
|
|
blocks_time_embed_dim = time_embed_dim |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block_3d( |
|
down_block_type, |
|
num_layers=layers_per_block[i], |
|
transformer_layers_per_block=transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=1e-5, |
|
cross_attention_dim=cross_attention_dim[i], |
|
num_attention_heads=num_attention_heads[i], |
|
resnet_act_fn="silu", |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlockSpatioTemporal( |
|
block_out_channels[-1], |
|
temb_channels=blocks_time_embed_dim, |
|
transformer_layers_per_block=transformer_layers_per_block[-1], |
|
cross_attention_dim=cross_attention_dim[-1], |
|
num_attention_heads=num_attention_heads[-1], |
|
) |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_num_attention_heads = list(reversed(num_attention_heads)) |
|
reversed_layers_per_block = list(reversed(layers_per_block)) |
|
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) |
|
reversed_transformer_layers_per_block = list( |
|
reversed(transformer_layers_per_block) |
|
) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[ |
|
min(i + 1, len(block_out_channels) - 1) |
|
] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block_3d( |
|
up_block_type, |
|
num_layers=reversed_layers_per_block[i] + 1, |
|
transformer_layers_per_block=reversed_transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=1e-5, |
|
resolution_idx=i, |
|
cross_attention_dim=reversed_cross_attention_dim[i], |
|
num_attention_heads=reversed_num_attention_heads[i], |
|
resnet_act_fn="silu", |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm( |
|
num_channels=block_out_channels[0], num_groups=32, eps=1e-5 |
|
) |
|
self.conv_act = nn.SiLU() |
|
|
|
self.conv_out = nn.Conv2d( |
|
block_out_channels[0], |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
|
|
|
|
@property |
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors( |
|
name: str, |
|
module: torch.nn.Module, |
|
processors: Dict[str, AttentionProcessor], |
|
): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor(self, processor): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all( |
|
proc.__class__ in CROSS_ATTENTION_PROCESSORS |
|
for proc in self.attn_processors.values() |
|
): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
def enable_forward_chunking( |
|
self, chunk_size: Optional[int] = None, dim: int = 0 |
|
) -> None: |
|
""" |
|
Sets the attention processor to use [feed forward |
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). |
|
|
|
Parameters: |
|
chunk_size (`int`, *optional*): |
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually |
|
over each tensor of dim=`dim`. |
|
dim (`int`, *optional*, defaults to `0`): |
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) |
|
or dim=1 (sequence length). |
|
""" |
|
if dim not in [0, 1]: |
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") |
|
|
|
|
|
chunk_size = chunk_size or 1 |
|
|
|
def fn_recursive_feed_forward( |
|
module: torch.nn.Module, chunk_size: int, dim: int |
|
): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, chunk_size, dim) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
cond_image=None, |
|
mask=None, |
|
|
|
return_dict: bool = True, |
|
) -> Union[UNetSTICOutput, Tuple]: |
|
r""" |
|
The [`UNetSpatioTemporalConditionModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. |
|
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.Tensor`): |
|
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. |
|
added_time_ids: (`torch.Tensor`): |
|
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal |
|
embeddings and added to the time embeddings. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_slatio_temporal.UNetSTICOutput`] instead |
|
of a plain tuple. |
|
Returns: |
|
[`~models.unet_slatio_temporal.UNetSTICOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSTICOutput`] is |
|
returned, otherwise a `tuple` is returned where the first element is the sample tensor. |
|
""" |
|
|
|
sample = torch.cat([x, cond_image], dim=1) |
|
|
|
|
|
res_target = 2 ** (np.ceil(np.log2(sample.shape[-1])).astype(int)) |
|
padding = (res_target - sample.shape[-1]) // 2 |
|
sample = F.pad( |
|
sample, (padding, padding, padding, padding, 0, 0), mode="circular" |
|
) |
|
|
|
|
|
sample = sample.permute(0, 2, 1, 3, 4) |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
batch_size, num_frames = sample.shape[:2] |
|
timesteps = timesteps.expand(batch_size) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample = sample.flatten(0, 1) |
|
|
|
|
|
emb = emb.repeat_interleave(num_frames, dim=0) |
|
|
|
encoder_hidden_states = encoder_hidden_states.repeat_interleave( |
|
num_frames, dim=0 |
|
) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
image_only_indicator = torch.zeros( |
|
batch_size, num_frames, dtype=sample.dtype, device=sample.device |
|
) |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if ( |
|
hasattr(downsample_block, "has_cross_attention") |
|
and downsample_block.has_cross_attention |
|
): |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
else: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
sample = self.mid_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[ |
|
: -len(upsample_block.resnets) |
|
] |
|
|
|
if ( |
|
hasattr(upsample_block, "has_cross_attention") |
|
and upsample_block.has_cross_attention |
|
): |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
|
|
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) |
|
|
|
if padding > 0: |
|
sample = sample[:, :, :, padding:-padding, padding:-padding] |
|
|
|
|
|
sample = sample.permute(0, 2, 1, 3, 4) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNetSTICOutput(sample=sample) |
|
|
|
|
|
class ContrastiveModel(nn.Module): |
|
def __init__(self, in_channels, out_channels, backbone=None, kl_loss_weight=0.0): |
|
super(ContrastiveModel, self).__init__() |
|
|
|
assert backbone is not None, "Backbone must be provided." |
|
self.backbone = backbone |
|
|
|
self.backbone = self.patch_backbone(self.backbone, in_channels, out_channels) |
|
|
|
self.fc_end = nn.Linear(out_channels, 1) |
|
|
|
self.kl_loss_weight = kl_loss_weight |
|
|
|
@classmethod |
|
def patch_backbone(cls, backbone, in_channels, out_channels): |
|
if "ResNet" in backbone.__class__.__name__: |
|
backbone.model.conv1 = nn.Conv2d( |
|
in_channels, |
|
64, |
|
kernel_size=(7, 7), |
|
stride=(2, 2), |
|
padding=(3, 3), |
|
bias=False, |
|
) |
|
backbone.model.fc = nn.Linear( |
|
in_features=512, out_features=out_channels, bias=True |
|
) |
|
else: |
|
raise Exception( |
|
"Invalid argument: " |
|
+ backbone.__class__.__name__ |
|
+ "\nChoose ResNet! Other architectures are not yet implemented in this framework." |
|
) |
|
|
|
return backbone |
|
|
|
def forward_once(self, x): |
|
features = self.backbone(x) |
|
output = torch.sigmoid(features) |
|
return output, features |
|
|
|
def forward_constrastive(self, input1, input2): |
|
y1 = self.forward_once(input1) |
|
y2 = self.forward_once(input2) |
|
|
|
difference = torch.abs(y1 - y2) |
|
output = self.fc_end(difference) |
|
|
|
return output |
|
|
|
def forward_fused(self, input1, input2): |
|
inputs = torch.cat((input1, input2), dim=0) |
|
outputs, features = self.forward_once(inputs) |
|
y1, y2 = torch.split(outputs, outputs.size(0) // 2, dim=0) |
|
difference = torch.abs(y1 - y2) |
|
output = self.fc_end(difference) |
|
|
|
|
|
if self.kl_loss_weight > 0: |
|
mu = torch.mean(features, dim=0) |
|
var = torch.var(features, dim=0) + 1e-6 |
|
kl_loss = 0.5 * torch.sum(mu.pow(2) + var - torch.log(var) - 1) |
|
else: |
|
kl_loss = torch.zeros((1,), device=output.device) |
|
return output, kl_loss |
|
|
|
def loss(self, output, target): |
|
return nn.functional.binary_cross_entropy_with_logits(output, target[:, None]) |
|
|
|
def forward(self, input1, input2, target): |
|
y_hat, kl_loss = self.forward_fused(input1, input2) |
|
loss = self.loss(y_hat, target) |
|
total_loss = loss + self.kl_loss_weight * kl_loss |
|
return total_loss, loss, kl_loss |
|
|
|
|
|
class ResNet18(ModelMixin, ConfigMixin): |
|
@register_to_config |
|
def __init__(self, weights=None, progress=False): |
|
super(ResNet18, self).__init__() |
|
self.model = resnet18(weights=weights, progress=progress) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|