File size: 40,945 Bytes
dab5199
 
 
 
 
 
 
 
 
ce2d514
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308c0d9
 
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308c0d9
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3906a56
 
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce2d514
2d696f5
 
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308c0d9
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce2d514
2d696f5
 
153ce0d
dab5199
 
 
 
 
 
 
 
 
 
166e2c6
dab5199
 
 
153ce0d
 
 
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153ce0d
dab5199
 
 
 
 
 
 
2d696f5
 
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3906a56
dab5199
 
 
 
3906a56
dab5199
 
ce2d514
2d696f5
 
dab5199
 
 
 
 
 
 
 
f03832e
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308c0d9
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03832e
 
2a15265
dab5199
 
2d696f5
 
dab5199
 
 
 
 
 
 
2a15265
 
dab5199
 
 
 
 
 
153ce0d
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d696f5
 
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65341d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08bf1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab5199
d2217ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40159fb
 
 
 
 
 
d2217ac
40159fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08bf1bc
40159fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08bf1bc
 
40159fb
 
 
 
 
 
08bf1bc
 
40159fb
 
dab5199
08bf1bc
b4b41df
 
 
1e19771
dab5199
 
 
 
 
 
 
 
 
63a37a5
dab5199
 
 
 
 
 
 
 
40159fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab5199
 
 
 
 
766c801
dab5199
 
 
 
 
 
 
 
 
 
 
 
65341d8
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2217ac
40159fb
 
 
dab5199
 
 
 
 
40159fb
dab5199
 
 
 
 
 
 
 
 
40159fb
dab5199
 
 
 
766c801
dab5199
 
 
 
 
 
 
 
 
 
 
 
40159fb
dab5199
 
40159fb
dab5199
 
 
 
766c801
dab5199
 
 
 
40159fb
 
 
dab5199
 
 
 
 
 
 
40159fb
dab5199
 
 
 
766c801
dab5199
 
 
 
 
 
 
 
 
40159fb
dab5199
 
 
 
 
 
 
65341d8
 
 
 
 
 
 
dab5199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
import json
import os
import types
from urllib.parse import urlparse

import cv2
import diffusers
import gradio as gr
import numpy as np
import spaces
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from safetensors.torch import load_file
from torch.nn import functional as F
from torchdiffeq import odeint_adjoint as odeint

from echoflow.common import instantiate_class_from_config, unscale_latents
from echoflow.common.models import (
    ContrastiveModel,
    DiffuserSTDiT,
    ResNet18,
    SegDiTTransformer2DModel,
)

torch.set_grad_enabled(False)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float32

print(f"Using device: {device}")

# 4f4 latent space
B, T, C, H, W = 1, 64, 4, 28, 28

VIEWS = ["A4C", "PSAX", "PLAX"]


def load_model(path):
    if path.startswith("http"):
        parsed_url = urlparse(path)
        if "huggingface.co" in parsed_url.netloc:
            parts = parsed_url.path.strip("/").split("/")
            repo_id = "/".join(parts[:2])

            subfolder = None
            if len(parts) > 3:
                subfolder = "/".join(parts[4:])

            local_root = "./tmp"
            local_dir = os.path.join(local_root, repo_id.replace("/", "_"))
            if subfolder:
                local_dir = os.path.join(local_root, subfolder)
            os.makedirs(local_root, exist_ok=True)

            config_file = hf_hub_download(
                repo_id=repo_id,
                subfolder=subfolder,
                filename="config.json",
                local_dir=local_root,
                repo_type="model",
                token=os.getenv("READ_HF_TOKEN"),
                local_dir_use_symlinks=False,
            )

            assert os.path.exists(config_file)

            hf_hub_download(
                repo_id=repo_id,
                filename="diffusion_pytorch_model.safetensors",
                subfolder=subfolder,
                local_dir=local_root,
                local_dir_use_symlinks=False,
                token=os.getenv("READ_HF_TOKEN"),
            )

            path = local_dir

    model_root = os.path.join(config_file.split("config.json")[0])
    json_path = os.path.join(model_root, "config.json")
    assert os.path.exists(json_path)

    with open(json_path, "r") as f:
        config = json.load(f)

    klass_name = config["_class_name"]
    klass = getattr(diffusers, klass_name, None) or globals().get(klass_name, None)
    assert (
        klass is not None
    ), f"Could not find class {klass_name} in diffusers or global scope."
    assert hasattr(
        klass, "from_pretrained"
    ), f"Class {klass_name} does not support 'from_pretrained'."

    return klass.from_pretrained(path)


def load_reid(path):
    parsed_url = urlparse(path)
    parts = parsed_url.path.strip("/").split("/")
    repo_id = "/".join(parts[:2])
    subfolder = "/".join(parts[4:])

    local_root = "./tmp"

    config_file = hf_hub_download(
        repo_id=repo_id,
        subfolder=subfolder,
        filename="config.yaml",
        local_dir=local_root,
        repo_type="model",
        token=os.getenv("READ_HF_TOKEN"),
        local_dir_use_symlinks=False,
    )

    weights_file = hf_hub_download(
        repo_id=repo_id,
        subfolder=subfolder,
        filename="backbone.safetensors",
        local_dir=local_root,
        repo_type="model",
        token=os.getenv("READ_HF_TOKEN"),
        local_dir_use_symlinks=False,
    )

    config = OmegaConf.load(config_file)
    backbone = instantiate_class_from_config(config.backbone)
    backbone = ContrastiveModel.patch_backbone(
        backbone, config.model.args.in_channels, config.model.args.out_channels
    )
    state_dict = load_file(weights_file)
    backbone.load_state_dict(state_dict)
    backbone = backbone.to(device, dtype=dtype)
    backbone.eval()
    return backbone


def get_vae_scaler(path):
    scaler = torch.load(path)
    scaler = {k: v.to(device) for k, v in scaler.items()}
    return scaler


# generator = torch.Generator(device=device).manual_seed(0)

lifm = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/lifm/FMiT-S2-4f4")
lifm = lifm.to(device, dtype=dtype)
lifm.eval()

vae = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/vae/avae-4f4")
vae = vae.to(device, dtype=dtype)
vae.eval()
vae_scaler = get_vae_scaler("assets/scaling.pt")

reid = {
    "anatomies": {
        "A4C": torch.cat(
            [
                torch.load("assets/anatomies_dynamic.pt"),
                torch.load("assets/anatomies_ped_a4c.pt"),
            ],
            dim=0,
        ),
        "PSAX": torch.load("assets/anatomies_ped_psax.pt"),
        "PLAX": torch.load("assets/anatomies_lvh.pt"),
    },
    "models": {
        "A4C": load_reid(
            "https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/dynamic-4f4"
        ),
        "PSAX": load_reid(
            "https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/ped_psax-4f4"
        ),
        "PLAX": load_reid(
            "https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/lvh-4f4"
        ),
    },
    "tau": {
        "A4C": 0.9997,
        "PSAX": 0.9997,
        "PLAX": 0.9997,
    },
}

lvfm = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/lvfm/FMvT-S2-4f4")
lvfm = lvfm.to(device, dtype=dtype)
lvfm.eval()


def load_default_mask():
    """Load the default mask from disk. If not found, return a blank black mask."""
    default_mask_path = os.path.join("assets", "default_mask.png")
    try:
        if os.path.exists(default_mask_path):
            mask = Image.open(default_mask_path).convert("L")
            # Ensure the mask is square and of proper size
            mask = mask.resize((400, 400), Image.Resampling.LANCZOS)
            # Make sure it's binary (0 or 255)
            mask = ImageOps.autocontrast(mask, cutoff=0)
            return np.array(mask)
    except Exception as e:
        print(f"Error loading default mask: {e}")

    # Return a blank black mask if no default mask is found
    return np.zeros((400, 400), dtype=np.uint8)


def preprocess_mask(mask):
    """Ensure mask is properly formatted for the model."""
    if mask is None:
        return np.zeros((112, 112), dtype=np.uint8)

    # Check if mask is an EditorValue with multiple parts
    if isinstance(mask, dict) and "composite" in mask:
        # Use the composite image from the ImageEditor
        mask = mask["composite"]

    # If mask is already a numpy array, convert to PIL for processing
    if isinstance(mask, np.ndarray):
        mask_pil = Image.fromarray(mask)
    else:
        mask_pil = mask

    # Ensure the mask is in L mode (grayscale)
    mask_pil = mask_pil.convert("L")

    # Apply contrast to make it binary (0 or 255)
    mask_pil = ImageOps.autocontrast(mask_pil, cutoff=0)

    # Threshold to ensure binary values
    mask_pil = mask_pil.point(lambda p: 255 if p > 127 else 0)

    # Print sizes for debugging
    # print(f"Original mask size: {mask_pil.size}")

    # Resize to 112x112 for the model
    mask_pil = mask_pil.resize((112, 112), Image.Resampling.LANCZOS)

    # Convert back to numpy array
    return np.array(mask_pil)


@spaces.GPU(duration=3)
@torch.no_grad()
def generate_latent_image(mask, class_selection, sampling_steps=50):
    """Generate a latent image based on mask, class selection, and sampling steps"""

    # Mask
    mask = preprocess_mask(mask)
    mask = torch.from_numpy(mask).to(device, dtype=dtype)
    mask = mask.unsqueeze(0).unsqueeze(0)
    mask = F.interpolate(mask, size=(H, W), mode="bilinear", align_corners=False)
    mask = 1.0 * (mask > 0)

    # print(mask.shape, mask.min(), mask.max(), mask.mean(), mask.std())

    # Class
    class_idx = VIEWS.index(class_selection)
    class_idx = torch.tensor([class_idx], device=device, dtype=torch.long)

    # Timesteps
    timesteps = torch.linspace(
        1.0, 0.0, steps=sampling_steps + 1, device=device, dtype=dtype
    )

    forward_kwargs = {
        "class_labels": class_idx,  # B x 1
        "segmentation": mask,  # B x 1 x H x W
    }

    z_1 = torch.randn(
        (B, C, H, W),
        device=device,
        dtype=dtype,
        # generator=generator,
    )

    lifm.forward_original = lifm.forward

    def new_forward(self, t, y, *args, **kwargs):
        kwargs = {**kwargs, **forward_kwargs}
        return self.forward_original(y, t.view(1), *args, **kwargs).sample

    lifm.forward = types.MethodType(new_forward, lifm)

    # Use odeint to integrate
    with torch.autocast("cuda"):
        latent_image = odeint(
            lifm,
            z_1,
            timesteps,
            atol=1e-5,
            rtol=1e-5,
            adjoint_params=lifm.parameters(),
            method="euler",
        )[-1]

    lifm.forward = lifm.forward_original

    latent_image = latent_image.detach().cpu().numpy()

    # callm VAE here

    return latent_image  # B x C x H x W


@spaces.GPU(duration=3)
@torch.no_grad()
def decode_images(latents):
    """Decode latent representations to pixel space using a VAE.

    Args:
        latents: A numpy array of shape [B, C, H, W] for single image
                or [B, C, T, H, W] for sequences/animations

    Returns:
        numpy array of decoded images in [B, H, W, 3] format for single image
        or [B, C, T, H, W] for sequences
    """
    global vae
    if latents is None:
        return None

    vae = vae.to(device, dtype=dtype)
    vae.eval()

    # Convert to torch tensor if needed
    if not isinstance(latents, torch.Tensor):
        latents = torch.from_numpy(latents).to(device, dtype=dtype)

    # Unscale latents
    latents = unscale_latents(latents, vae_scaler)

    # Handle both single images and sequences
    is_sequence = len(latents.shape) == 5  # B C T H W

    # print("Sequence:", is_sequence)

    if is_sequence:
        B, C, T, H, W = latents.shape
        latents = rearrange(latents[0], "c t h w -> t c h w")
    else:
        B, C, H, W = latents.shape

    # print("Latents:", latents.shape)

    with torch.no_grad():
        # Decode latents to pixel space
        # decode one by one
        decoded = []
        for i in range(latents.shape[0]):
            decoded.append(vae.decode(latents[i : i + 1].float()).sample)
        decoded = torch.cat(decoded, dim=0)

        decoded = (decoded + 1) * 128
        decoded = decoded.clamp(0, 255).to(torch.uint8).cpu()

        if is_sequence:
            # Reshape back to [B, C, T, H, W] for sequences
            decoded = rearrange(decoded, "t c h w -> c t h w").unsqueeze(0)
        else:
            decoded = decoded.squeeze()
            decoded = decoded.permute(1, 2, 0)

    # print("Decoded:", decoded.shape)
    return decoded.numpy()


def decode_latent_to_pixel(latent_image):
    """Decode a single latent image to pixel space"""
    if latent_image is None:
        return None

    # Add batch dimension if needed
    if len(latent_image.shape) == 3:
        latent_image = latent_image[None, ...]

    decoded_image = decode_images(latent_image)
    decoded_image = cv2.resize(
        decoded_image, (400, 400), interpolation=cv2.INTER_NEAREST
    )

    return decoded_image


@spaces.GPU(duration=3)
@torch.no_grad()
def check_privacy(latent_image_numpy, class_selection):
    """Check if the latent image is too similar to database images"""
    latent_image = torch.from_numpy(latent_image_numpy).to(device, dtype=dtype)
    reid_model = reid["models"][class_selection].to(device, dtype=dtype)
    real_anatomies = reid["anatomies"][class_selection]  # already scaled
    tau = reid["tau"][class_selection]

    with torch.no_grad():
        features = reid_model(latent_image).sigmoid().cpu()

    corr = torch.corrcoef(torch.cat([real_anatomies, features], dim=0))[0, 1:]
    corr = corr.max()

    if corr > tau:
        return (
            None,
            f"⚠️ **Warning:** Generated image is too similar to training data. Privacy check failed.",
        )
    else:
        return (
            latent_image_numpy,
            f"✅ **Success:** Generated image passed privacy check.",
        )


@spaces.GPU(duration=3)
@torch.no_grad()
def generate_animation(
    latent_image, ejection_fraction, sampling_steps=50, cfg_scale=1.0
):
    """Generate an animated sequence of latent images based on EF"""
    # print(
    #     f"Generating animation with EF = {ejection_fraction}, steps = {sampling_steps}, CFG = {cfg_scale}"
    # )
    # print(latent_image.shape, type(latent_image))
    print("Generating animation...")

    if latent_image is None:
        return None

    lvefs = torch.tensor([ejection_fraction / 100.0], device=device, dtype=dtype)
    lvefs = lvefs[:, None, None].to(device, dtype)
    uncond_lvefs = -1 * torch.ones_like(lvefs)

    ref_images = torch.from_numpy(latent_image).to(device, dtype)
    ref_images = ref_images[:, :, None, :, :]  # B x C x 1 x H x W
    ref_images = ref_images.repeat(1, 1, T, 1, 1)  # B x C x T x H x W
    uncond_images = torch.zeros_like(ref_images)

    timesteps = torch.linspace(
        1.0, 0.0, steps=sampling_steps + 1, device=device, dtype=dtype
    )

    forward_kwargs = {
        "encoder_hidden_states": lvefs,
        "cond_image": ref_images,
    }

    z_1 = torch.randn(
        (B, C, T, H, W),
        device=device,
        dtype=dtype,
        # generator=generator,
    )

    # print(
    #     z_1.shape,
    #     forward_kwargs["encoder_hidden_states"].shape,
    #     forward_kwargs["cond_image"].shape,
    # )

    lvfm.forward_original = lvfm.forward

    def new_forward(self, t, y, *args, **kwargs):
        kwargs = {**kwargs, **forward_kwargs}
        # y has shape (B, C, T, H, W)

        pred = self.forward_original(y, t.repeat(y.size(0)), *args, **kwargs).sample

        if cfg_scale != 1.0:
            uncond_kwargs = {
                "encoder_hidden_states": uncond_lvefs,
                "cond_image": uncond_images,
            }
            uncond_pred = self.forward_original(
                y, t.repeat(y.size(0)), *args, **uncond_kwargs
            ).sample

            pred = uncond_pred + cfg_scale * (pred - uncond_pred)

        return pred

    lvfm.forward = types.MethodType(new_forward, lvfm)

    with torch.autocast("cuda"):
        synthetic_video = odeint(
            lvfm,
            z_1,
            timesteps,
            atol=1e-5,
            rtol=1e-5,
            adjoint_params=lvfm.parameters(),
            method="euler",
        )[-1]

    lvfm.forward = lvfm.forward_original

    # print("Synthetic video:", synthetic_video.shape)

    print("Animation generated")

    return synthetic_video.detach().cpu()  # B x C x T x H x W


@spaces.GPU(duration=3)
@torch.no_grad()
def decode_animation(latent_animation):
    """Decode a latent animation to pixel space"""
    if latent_animation is None:
        return None

    # Convert to torch tensor if needed
    if not isinstance(latent_animation, torch.Tensor):
        latent_animation = torch.from_numpy(latent_animation)
    latent_animation = latent_animation.to(device, dtype=dtype)

    # Ensure shape is B x C x T x H x W
    if len(latent_animation.shape) == 4:  # [T, C, H, W]
        latent_animation = latent_animation[None, ...]  # Add batch dimension

    # Decode using VAE
    decoded = decode_images(latent_animation)  # Returns B x C x T x H x W numpy array

    # Remove batch dimension and transpose to T x H x W x C
    decoded = np.transpose(decoded[0], (1, 2, 3, 0))  # [T, H, W, C]

    # Resize frames to 400x400
    decoded = np.stack(
        [
            cv2.resize(frame, (400, 400), interpolation=cv2.INTER_NEAREST)
            for frame in decoded
        ]
    )

    # Save to temporary file
    temp_file = "temp_video_2.mp4"
    fps = 32
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    out = cv2.VideoWriter(temp_file, fourcc, fps, (400, 400))

    # Write frames
    for frame in decoded:
        out.write(frame)
    out.release()

    return temp_file


def convert_latent_to_display(latent_image):
    """Convert multi-channel latent image to grayscale for display"""
    if latent_image is None:
        return None

    # Check shape
    if len(latent_image.shape) == 4:  # [B, C, H, W]
        # Remove batch dimension and average across channels
        display_image = np.squeeze(latent_image, axis=0)  # [C, H, W]
        display_image = np.mean(display_image, axis=0)  # [H, W]
    elif len(latent_image.shape) == 3:  # [C, H, W]
        # Average across channels
        display_image = np.mean(latent_image, axis=0)  # [H, W]
    else:
        display_image = latent_image

    # Normalize to 0-1 range
    display_image = (display_image - display_image.min()) / (
        display_image.max() - display_image.min() + 1e-8
    )

    # Convert to grayscale image
    display_image = (display_image * 255).astype(np.uint8)

    # Resize to a larger size (e.g., 400x400) using bicubic interpolation
    display_image = cv2.resize(
        display_image, (400, 400), interpolation=cv2.INTER_NEAREST
    )

    return display_image


@spaces.GPU(duration=3)
@torch.no_grad()
def latent_animation_to_grayscale(latent_animation):
    """Convert multi-channel latent animation to grayscale for display"""
    if latent_animation is None:
        return None

    # print("Input shape:", latent_animation.shape)

    # Convert to numpy if it's a torch tensor
    if torch.is_tensor(latent_animation):
        latent_animation = latent_animation.detach().cpu().numpy()

    # Handle shape B x C x T x H x W -> T x H x W
    if len(latent_animation.shape) == 5:  # [B, C, T, H, W]
        latent_animation = np.squeeze(latent_animation, axis=0)  # [C, T, H, W]
        latent_animation = np.transpose(latent_animation, (1, 0, 2, 3))  # [T, C, H, W]

    # print("After transpose:", latent_animation.shape)

    # Average across channels
    latent_animation = np.mean(latent_animation, axis=1)  # [T, H, W]

    # print("After channel reduction:", latent_animation.shape)

    # Normalize each frame independently
    min_vals = latent_animation.min(axis=(1, 2), keepdims=True)
    max_vals = latent_animation.max(axis=(1, 2), keepdims=True)
    latent_animation = (latent_animation - min_vals) / (max_vals - min_vals + 1e-8)

    # Convert to uint8
    latent_animation = (latent_animation * 255).astype(np.uint8)

    # print("Before resize:", latent_animation.shape)

    # Resize each frame
    resized_frames = []
    for frame in latent_animation:
        resized = cv2.resize(frame, (400, 400), interpolation=cv2.INTER_NEAREST)
        resized_frames.append(resized)

    # Stack back into video
    grayscale_video = np.stack(resized_frames)

    # print("Final shape:", grayscale_video.shape)

    # Add a dummy channel dimension for grayscale video
    grayscale_video = grayscale_video[..., None].repeat(3, axis=-1)  # Convert to RGB

    # print("Output shape with channels:", grayscale_video.shape)

    # Save to temporary file
    temp_file = "temp_video.mp4"
    fps = 32

    # Create VideoWriter object
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    out = cv2.VideoWriter(temp_file, fourcc, fps, (400, 400))

    # Write frames
    for frame in grayscale_video:
        out.write(frame)

    out.release()

    return temp_file


# Add function to load view-specific mask
def load_view_mask(view):
    mask_path = f"assets/{view.lower()}_seg.png"
    try:
        mask_image = Image.open(mask_path).convert("L")
        mask_image = mask_image.resize((400, 400), Image.Resampling.LANCZOS)
        # Make it binary (0 or 255)
        mask_image = ImageOps.autocontrast(mask_image, cutoff=0)
        mask_array = np.array(mask_image)

        # Create the editor value structure
        editor_value = {
            "background": np.zeros((400, 400), dtype=np.uint8),  # Black background
            "layers": [mask_array],  # The mask as an editable layer
            "composite": mask_array,  # The composite image
        }
        return editor_value
    except Exception as e:
        print(f"Error loading mask for view {view}: {e}")
        return None


custom_js = """
<script>
console.log("Hello, world!");
(function() {
    // Poll every 100ms for the existence of the header row
    const intervalId = setInterval(() => {
        console.log("Polling for header row");
        const headerRow = document.querySelector("tr.tr-head");
        if (headerRow) {
            const headers = headerRow.querySelectorAll("th");
            headers.forEach(cell => {
                const text = cell.innerText.trim();
                if (text === "Binary Mask") {
                    cell.innerText = "Mask";
                } else if (text === "View Class") {
                    cell.innerText = "View";
                } else if (text === "Number of Sampling Steps") {
                    cell.innerText = "Img Samp. Steps";
                } else if (text === "Ejection Fraction (%)") {
                    cell.innerText = "EF %";
                } else if (text === "Number of Sampling Steps.") {
                    cell.innerText = "Video Samp. Steps";
                } else if (text === "Classifier-Free Guidance Scale") {
                    cell.innerText = "CFG";
                } else if (text === "Filtered Latent Image") {
                    cell.innerText = "Filtered Image";
                }
            });
            clearInterval(intervalId);
            console.log("Headers updated.");
        }
    }, 500);
})();
</script>
"""


def create_demo():

    black_background = np.zeros((400, 400), dtype=np.uint8)

    # Load the default mask image if it exists
    try:
        mask_image = Image.open("assets/a4c_seg.png").convert("L")
        mask_image = mask_image.resize((400, 400), Image.Resampling.LANCZOS)
        # Make it binary (0 or 255)
        mask_image = ImageOps.autocontrast(mask_image, cutoff=0)
        mask_image = mask_image.point(lambda p: 255 if p > 127 else 0)
        mask_array = np.array(mask_image)

        # Create the editor value structure
        editor_value = {
            "background": black_background,  # Black background
            "layers": [mask_array],  # The mask as an editable layer
            "composite": mask_array,  # The composite image (what's displayed)
        }
    except Exception as e:
        print(f"Error loading mask image: {e}")
        # Fall back to empty canvas
        editor_value = black_background

    # Define all components first
    mask_input = gr.ImageEditor(
        label="Binary Mask",
        height=400,
        width=400,
        image_mode="L",
        value=editor_value,
        type="numpy",
        brush=gr.Brush(
            colors=["#ffffff"],
            color_mode="fixed",
            default_size=20,
            default_color="#ffffff",
        ),
        eraser=gr.Eraser(default_size=20),
        show_download_button=True,
        sources=[],
        canvas_size=(400, 400),
        fixed_canvas=True,
        layers=False,
        render=False,
    )

    class_selection = gr.Radio(
        choices=["A4C", "PSAX", "PLAX"],
        label="View Class",
        value="A4C",
        render=False,
    )

    sampling_steps = gr.Slider(
        minimum=1,
        maximum=200,
        value=100,
        step=1,
        label="Number of Sampling Steps",
        render=False,
    )

    ef_slider = gr.Slider(
        minimum=0,
        maximum=100,
        value=65,
        label="Ejection Fraction (%)",
        render=False,
    )

    animation_steps = gr.Slider(
        minimum=1,
        maximum=200,
        value=100,
        step=1,
        label="Number of Sampling Steps.",
        render=False,
    )

    cfg_slider = gr.Slider(
        minimum=0,
        maximum=10,
        value=1,
        step=1,
        label="Classifier-Free Guidance Scale",
        render=False,
    )

    latent_image_display = gr.Image(
        label="Latent Image",
        type="numpy",
        height=400,
        width=400,
        render=False,
    )

    decoded_image_display = gr.Image(
        label="Decoded Image",
        type="numpy",
        height=400,
        width=400,
        render=False,
    )

    privacy_status = gr.Markdown(render=False)

    filtered_latent_display = gr.Image(
        label="Filtered Latent Image",
        type="numpy",
        height=400,
        width=400,
        render=False,
    )

    latent_animation_display = gr.Video(
        label="Latent Video",
        format="mp4",
        render=False,
        autoplay=True,
        loop=True,
    )

    decoded_animation_display = gr.Video(
        label="Decoded Video",
        format="mp4",
        render=False,
        autoplay=True,
        loop=True,
    )

    # Define the theme and layout
    with gr.Blocks(theme=gr.themes.Soft(), head=custom_js) as demo:
        gr.Markdown(
            "# EchoFlow: A Foundation Model for Cardiac Ultrasound Image and Video Generation"
        )
        gr.Markdown("## Preprint: https://arxiv.org/abs/2503.22357")
        gr.Markdown("## Dataset Generation Pipeline")

        gr.Markdown(
            """
        This demo showcases EchoFlow's ability to generate synthetic echocardiogram images and videos while preserving patient privacy. The pipeline consists of four main steps:
        
        1. **Latent Image Generation**: Draw a mask to indicate the region where the Left Ventricle should appear. Select the desired cardiac view, and click "Generate Latent Image". This outputs a latent image, which can be decoded into a pixel space image by clicking "Decode to Pixel Space".
        2. **Privacy Filter**: When clicking "Run Privacy Check", the generated image will be checked against a database of all training anatomies to ensure it is sufficiently different from real patient data.
        3. **Latent Video Generation**: If the privacy check passes, the latent image can be animated into a video with the desired Ejection Fraction.
        4. **Video Decoding**: The video can be decoded back to pixel space by clicking "Decode Video".
        
        ### ⚙️ Parameters
        - **Sampling Steps**: Higher values produce better quality but take longer
        - **Ejection Fraction**: Controls the strength of heart contraction in the animation
        - **CFG Scale**: Controls how closely the animation follows the specified conditions
        """
        )

        def load_example(
            mask,
            view,
            steps,
            ef,
            anim_steps,
            cfg,
            latent,
            decoded,
            status,
            filtered,
            latent_vid,
            decoded_vid,
        ):
            # This function will be called when an example is clicked
            # It returns all values in order they should be loaded into components
            return [
                mask,
                view,
                steps,
                ef,
                anim_steps,
                cfg,
                latent,
                decoded,
                status,
                filtered,
                latent_vid,
                decoded_vid,
            ]

        # Add examples using the components
        examples = gr.Examples(
            examples=[
                # Example 1: A4C view
                [
                    # Inputs
                    {
                        "background": np.zeros((400, 400), dtype=np.uint8),
                        "layers": [
                            np.array(
                                Image.open("assets/a4c_seg.png")
                                .convert("L")
                                .resize((400, 400))
                            )
                        ],
                        "composite": np.array(
                            Image.open("assets/a4c_seg.png")
                            .convert("L")
                            .resize((400, 400))
                        ),
                    },
                    "A4C",  # view
                    100,  # sampling steps
                    65,  # EF slider
                    100,  # animation steps
                    1.0,  # cfg scale
                    # Pre-computed outputs
                    Image.open("assets/examples/a4c_latent.png"),  # latent image
                    Image.open("assets/examples/a4c_decoded.png"),  # decoded image
                    "✅ **Success:** Generated image passed privacy check.",  # privacy status
                    Image.open("assets/examples/a4c_filtered.png"),  # filtered latent
                    "assets/examples/a4c_latent.mp4",  # latent animation
                    "assets/examples/a4c_decoded.mp4",  # decoded animation
                ],
                # Example 2: PSAX view
                [
                    # Inputs
                    {
                        "background": np.zeros((400, 400), dtype=np.uint8),
                        "layers": [
                            np.array(
                                Image.open("assets/psax_seg.png")
                                .convert("L")
                                .resize((400, 400))
                            )
                        ],
                        "composite": np.array(
                            Image.open("assets/psax_seg.png")
                            .convert("L")
                            .resize((400, 400))
                        ),
                    },
                    "PSAX",  # view
                    100,  # sampling steps
                    65,  # EF slider
                    100,  # animation steps
                    1.0,  # cfg scale
                    # Pre-computed outputs
                    Image.open("assets/examples/psax_latent.png"),  # latent image
                    Image.open("assets/examples/psax_decoded.png"),  # decoded image
                    "✅ **Success:** Generated image passed privacy check.",  # privacy status
                    Image.open("assets/examples/psax_filtered.png"),  # filtered latent
                    "assets/examples/psax_latent.mp4",  # latent animation
                    "assets/examples/psax_decoded.mp4",  # decoded animation
                ],
                # Example 3: PLAX view
                [
                    # Inputs
                    {
                        "background": np.zeros((400, 400), dtype=np.uint8),
                        "layers": [
                            np.array(
                                Image.open("assets/plax_seg.png")
                                .convert("L")
                                .resize((400, 400))
                            )
                        ],
                        "composite": np.array(
                            Image.open("assets/plax_seg.png")
                            .convert("L")
                            .resize((400, 400))
                        ),
                    },
                    "PLAX",  # view
                    100,  # sampling steps
                    65,  # EF slider
                    100,  # animation steps
                    1.0,  # cfg scale
                    # Pre-computed outputs
                    Image.open("assets/examples/plax_latent.png"),  # latent image
                    Image.open("assets/examples/plax_decoded.png"),  # decoded image
                    "✅ **Success:** Generated image passed privacy check.",  # privacy status
                    Image.open("assets/examples/plax_filtered.png"),  # filtered latent
                    "assets/examples/plax_latent.mp4",  # latent animation
                    "assets/examples/plax_decoded.mp4",  # decoded animation
                ],
            ],
            inputs=[
                mask_input,
                class_selection,
                sampling_steps,
                ef_slider,
                animation_steps,
                cfg_slider,
                latent_image_display,
                decoded_image_display,
                privacy_status,
                filtered_latent_display,
                latent_animation_display,
                decoded_animation_display,
            ],
            fn=load_example,
            label="Click on an example to see the results immediately.",
            examples_per_page=3,
        )

        # Main container with 4 columns
        with gr.Row():
            # Column 1: Latent Image Generation
            with gr.Column():
                gr.Markdown(
                    '<img src="https://huggingface.co/spaces/HReynaud/EchoFlow/resolve/main/assets/h1.png" style="width: 100%; height: 75px; object-fit: contain;">'
                )
                gr.Markdown("### Latent Image Generation")

                with gr.Row():
                    # Input mask (binary image)
                    with gr.Column(scale=1):
                        gr.Markdown("Draw the LV mask (white = region of interest)")
                        # Create a black background for the canvas
                        black_background = np.zeros((400, 400), dtype=np.uint8)

                        # Load the default mask image if it exists
                        try:
                            mask_image = Image.open("assets/a4c_seg.png").convert("L")
                            mask_image = mask_image.resize(
                                (400, 400), Image.Resampling.LANCZOS
                            )
                            # Make it binary (0 or 255)
                            mask_image = ImageOps.autocontrast(mask_image, cutoff=0)
                            mask_image = mask_image.point(
                                lambda p: 255 if p > 127 else 0
                            )
                            mask_array = np.array(mask_image)

                            # Create the editor value structure
                            editor_value = {
                                "background": black_background,  # Black background
                                "layers": [mask_array],  # The mask as an editable layer
                                "composite": mask_array,  # The composite image (what's displayed)
                            }
                        except Exception as e:
                            print(f"Error loading mask image: {e}")
                            # Fall back to empty canvas
                            editor_value = black_background

                        # mask_input.value = editor_value
                        mask_input.render()
                        class_selection.render()
                        sampling_steps.render()

                # Generate button
                generate_btn = gr.Button("Generate Latent Image", variant="primary")

                # Display area for latent image (grayscale visualization)
                latent_image_display.render()

                # Decode button (initially disabled)
                decode_btn = gr.Button(
                    "Decode to Pixel Space (Optional)",
                    interactive=False,
                    variant="primary",
                )

                # Display area for decoded image
                decoded_image_display.render()

            # Column 2: Privacy Filter
            with gr.Column():
                gr.Markdown(
                    '<img src="https://huggingface.co/spaces/HReynaud/EchoFlow/resolve/main/assets/h2.png" style="width: 100%; height: 75px; object-fit: contain;">'
                )
                gr.Markdown("### Privacy Filter")
                gr.Markdown(
                    "Checks if the generated image is too similar to training data"
                )

                # Privacy check button
                privacy_btn = gr.Button(
                    "Run Privacy Check", interactive=False, variant="primary"
                )

                # Display area for privacy result status
                privacy_status.render()

                # Display area for privacy-filtered latent image
                filtered_latent_display.render()

            # Column 3: Animation
            with gr.Column():
                gr.Markdown(
                    '<img src="https://huggingface.co/spaces/HReynaud/EchoFlow/resolve/main/assets/h3.png" style="width: 100%; height: 75px; object-fit: contain;">'
                )
                gr.Markdown("### Latent Video Generation")

                # Ejection Fraction slider
                ef_slider.render()
                animation_steps.render()
                cfg_slider.render()

                # Animate button
                animate_btn = gr.Button(
                    "Generate Video", interactive=False, variant="primary"
                )

                # Display area for latent animation (grayscale)
                latent_animation_display.render()

            # Column 4: Video Decoding
            with gr.Column():
                gr.Markdown(
                    '<img src="https://huggingface.co/spaces/HReynaud/EchoFlow/resolve/main/assets/h4.png" style="width: 100%; height: 75px; object-fit: contain;">'
                )
                gr.Markdown("### Video Decoding")

                # Decode animation button
                decode_animation_btn = gr.Button(
                    "Decode Video", interactive=False, variant="primary"
                )

                # Display area for decoded animation
                decoded_animation_display.render()

        # Hidden state variables to store the full latent representations
        latent_image_state = gr.State(None)
        filtered_latent_state = gr.State(None)
        latent_animation_state = gr.State(None)

        # Event handlers
        class_selection.change(
            fn=load_view_mask,
            inputs=[class_selection],
            outputs=[mask_input],
            queue=False,
        )

        generate_btn.click(
            fn=generate_latent_image,
            inputs=[mask_input, class_selection, sampling_steps],
            outputs=[latent_image_state],
            queue=True,
        ).then(
            fn=convert_latent_to_display,
            inputs=[latent_image_state],
            outputs=[latent_image_display],
            queue=False,
        ).then(
            fn=lambda x: gr.Button(
                interactive=x is not None
            ),  # Properly update button state
            inputs=[latent_image_state],
            outputs=[decode_btn],
            queue=False,
        ).then(
            fn=lambda x: gr.Button(
                interactive=x is not None
            ),  # Properly update button state
            inputs=[latent_image_state],
            outputs=[privacy_btn],
            queue=False,
        )

        decode_btn.click(
            fn=decode_latent_to_pixel,
            inputs=[latent_image_state],
            outputs=[decoded_image_display],
            queue=True,
        ).then(
            fn=lambda x: gr.Button(
                interactive=x is not None
            ),  # Properly update button state
            inputs=[decoded_image_display],
            outputs=[privacy_btn],
            queue=False,
        )

        privacy_btn.click(
            fn=check_privacy,
            inputs=[latent_image_state, class_selection],
            outputs=[filtered_latent_state, privacy_status],
            queue=True,
        ).then(
            fn=convert_latent_to_display,
            inputs=[filtered_latent_state],
            outputs=[filtered_latent_display],
            queue=False,
        ).then(
            fn=lambda x: gr.Button(
                interactive=x is not None
            ),  # Properly update button state
            inputs=[filtered_latent_state],
            outputs=[animate_btn],
            queue=False,
        )

        animate_btn.click(
            fn=generate_animation,
            inputs=[filtered_latent_state, ef_slider, animation_steps, cfg_slider],
            outputs=[latent_animation_state],
            queue=True,
        ).then(
            fn=latent_animation_to_grayscale,
            inputs=[latent_animation_state],
            outputs=[latent_animation_display],
            queue=False,
        ).then(
            fn=lambda x: gr.Button(
                interactive=x is not None
            ),  # Properly update button state
            inputs=[latent_animation_state],
            outputs=[decode_animation_btn],
            queue=False,
        )

        decode_animation_btn.click(
            fn=decode_animation,
            inputs=[latent_animation_state],  # Remove vae_state from inputs
            outputs=[decoded_animation_display],
            queue=True,
        )

    return demo


if __name__ == "__main__":
    demo = create_demo()
    demo.launch()