File size: 32,325 Bytes
dab5199 ce2d514 dab5199 ce2d514 ca40f6b dab5199 ce2d514 ca40f6b dab5199 ce2d514 ca40f6b dab5199 766c801 dab5199 766c801 dab5199 766c801 dab5199 766c801 dab5199 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 |
import json
import os
import types
from urllib.parse import urlparse
import cv2
import diffusers
import gradio as gr
import numpy as np
import spaces
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from safetensors.torch import load_file
from torch.nn import functional as F
from torchdiffeq import odeint_adjoint as odeint
from echoflow.common import instantiate_class_from_config, unscale_latents
from echoflow.common.models import (
ContrastiveModel,
DiffuserSTDiT,
ResNet18,
SegDiTTransformer2DModel,
)
torch.set_grad_enabled(False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
# 4f4 latent space
B, T, C, H, W = 1, 64, 4, 28, 28
VIEWS = ["A4C", "PSAX", "PLAX"]
def load_model(path):
if path.startswith("http"):
parsed_url = urlparse(path)
if "huggingface.co" in parsed_url.netloc:
parts = parsed_url.path.strip("/").split("/")
repo_id = "/".join(parts[:2])
subfolder = None
if len(parts) > 3:
subfolder = "/".join(parts[4:])
local_root = "./tmp"
local_dir = os.path.join(local_root, repo_id.replace("/", "_"))
if subfolder:
local_dir = os.path.join(local_root, subfolder)
os.makedirs(local_root, exist_ok=True)
config_file = hf_hub_download(
repo_id=repo_id,
subfolder=subfolder,
filename="config.json",
local_dir=local_root,
repo_type="model",
token=os.getenv("READ_HF_TOKEN"),
local_dir_use_symlinks=False,
)
assert os.path.exists(config_file)
hf_hub_download(
repo_id=repo_id,
filename="diffusion_pytorch_model.safetensors",
subfolder=subfolder,
local_dir=local_root,
local_dir_use_symlinks=False,
token=os.getenv("READ_HF_TOKEN"),
)
path = local_dir
model_root = os.path.join(config_file.split("config.json")[0])
json_path = os.path.join(model_root, "config.json")
assert os.path.exists(json_path)
with open(json_path, "r") as f:
config = json.load(f)
klass_name = config["_class_name"]
klass = getattr(diffusers, klass_name, None) or globals().get(klass_name, None)
assert (
klass is not None
), f"Could not find class {klass_name} in diffusers or global scope."
assert hasattr(
klass, "from_pretrained"
), f"Class {klass_name} does not support 'from_pretrained'."
return klass.from_pretrained(path)
def load_reid(path):
parsed_url = urlparse(path)
parts = parsed_url.path.strip("/").split("/")
repo_id = "/".join(parts[:2])
subfolder = "/".join(parts[4:])
local_root = "./tmp"
config_file = hf_hub_download(
repo_id=repo_id,
subfolder=subfolder,
filename="config.yaml",
local_dir=local_root,
repo_type="model",
token=os.getenv("READ_HF_TOKEN"),
local_dir_use_symlinks=False,
)
weights_file = hf_hub_download(
repo_id=repo_id,
subfolder=subfolder,
filename="backbone.safetensors",
local_dir=local_root,
repo_type="model",
token=os.getenv("READ_HF_TOKEN"),
local_dir_use_symlinks=False,
)
config = OmegaConf.load(config_file)
backbone = instantiate_class_from_config(config.backbone)
backbone = ContrastiveModel.patch_backbone(
backbone, config.model.args.in_channels, config.model.args.out_channels
)
state_dict = load_file(weights_file)
backbone.load_state_dict(state_dict)
backbone = backbone.to(device, dtype=dtype)
backbone.eval()
return backbone
def get_vae_scaler(path):
scaler = torch.load(path)
scaler = {k: v.to(device) for k, v in scaler.items()}
return scaler
generator = torch.Generator(device=device).manual_seed(0)
lifm = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/lifm/FMiT-S2-4f4")
lifm = lifm.to(device, dtype=dtype)
lifm.eval()
vae = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/vae/avae-4f4")
vae = vae.to(device, dtype=dtype)
vae.eval()
vae_scaler = get_vae_scaler("assets/scaling.pt")
reid = {
"anatomies": {
"A4C": torch.cat(
[
torch.load("assets/anatomies_dynamic.pt"),
torch.load("assets/anatomies_ped_a4c.pt"),
],
dim=0,
),
"PSAX": torch.load("assets/anatomies_ped_psax.pt"),
"PLAX": torch.load("assets/anatomies_lvh.pt"),
},
"models": {
"A4C": load_reid(
"https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/dynamic-4f4"
),
"PSAX": load_reid(
"https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/ped_psax-4f4"
),
"PLAX": load_reid(
"https://huggingface.co/HReynaud/EchoFlow/tree/main/reid/lvh-4f4"
),
},
"tau": {
"A4C": 0.9997,
"PSAX": 0.9953,
"PLAX": 0.9950,
},
}
lvfm = load_model("https://huggingface.co/HReynaud/EchoFlow/tree/main/lvfm/FMvT-S2-4f4")
lvfm = lvfm.to(device, dtype=dtype)
lvfm.eval()
def load_default_mask():
"""Load the default mask from disk. If not found, return a blank black mask."""
default_mask_path = os.path.join("assets", "default_mask.png")
try:
if os.path.exists(default_mask_path):
mask = Image.open(default_mask_path).convert("L")
# Ensure the mask is square and of proper size
mask = mask.resize((400, 400), Image.Resampling.LANCZOS)
# Make sure it's binary (0 or 255)
mask = ImageOps.autocontrast(mask, cutoff=0)
return np.array(mask)
except Exception as e:
print(f"Error loading default mask: {e}")
# Return a blank black mask if no default mask is found
return np.zeros((400, 400), dtype=np.uint8)
def preprocess_mask(mask):
"""Ensure mask is properly formatted for the model."""
if mask is None:
return np.zeros((112, 112), dtype=np.uint8)
# Check if mask is an EditorValue with multiple parts
if isinstance(mask, dict) and "composite" in mask:
# Use the composite image from the ImageEditor
mask = mask["composite"]
# If mask is already a numpy array, convert to PIL for processing
if isinstance(mask, np.ndarray):
mask_pil = Image.fromarray(mask)
else:
mask_pil = mask
# Ensure the mask is in L mode (grayscale)
mask_pil = mask_pil.convert("L")
# Apply contrast to make it binary (0 or 255)
mask_pil = ImageOps.autocontrast(mask_pil, cutoff=0)
# Threshold to ensure binary values
mask_pil = mask_pil.point(lambda p: 255 if p > 127 else 0)
# Print sizes for debugging
# print(f"Original mask size: {mask_pil.size}")
# Resize to 112x112 for the model
mask_pil = mask_pil.resize((112, 112), Image.Resampling.LANCZOS)
# Convert back to numpy array
return np.array(mask_pil)
@spaces.GPU
def generate_latent_image(mask, class_selection, sampling_steps=50):
"""Generate a latent image based on mask, class selection, and sampling steps"""
# Mask
mask = preprocess_mask(mask)
mask = torch.from_numpy(mask).to(device, dtype=dtype)
mask = mask.unsqueeze(0).unsqueeze(0)
mask = F.interpolate(mask, size=(H, W), mode="bilinear", align_corners=False)
mask = 1.0 * (mask > 0)
# print(mask.shape, mask.min(), mask.max(), mask.mean(), mask.std())
# Class
class_idx = VIEWS.index(class_selection)
class_idx = torch.tensor([class_idx], device=device, dtype=torch.long)
# Timesteps
timesteps = torch.linspace(
1.0, 0.0, steps=sampling_steps + 1, device=device, dtype=dtype
)
forward_kwargs = {
"class_labels": class_idx, # B x 1
"segmentation": mask, # B x 1 x H x W
}
z_1 = torch.randn(
(B, C, H, W),
device=device,
dtype=dtype,
generator=generator,
)
lifm.forward_original = lifm.forward
def new_forward(self, t, y, *args, **kwargs):
kwargs = {**kwargs, **forward_kwargs}
return self.forward_original(y, t.view(1), *args, **kwargs).sample
lifm.forward = types.MethodType(new_forward, lifm)
# Use odeint to integrate
with torch.autocast("cuda"):
latent_image = odeint(
lifm,
z_1,
timesteps,
atol=1e-5,
rtol=1e-5,
adjoint_params=lifm.parameters(),
method="euler",
)[-1]
lifm.forward = lifm.forward_original
latent_image = latent_image.detach().cpu().numpy()
# callm VAE here
return latent_image # B x C x H x W
@spaces.GPU
def decode_images(latents, vae):
"""Decode latent representations to pixel space using a VAE.
Args:
latents: A numpy array of shape [B, C, H, W] for single image
or [B, C, T, H, W] for sequences/animations
vae: The VAE model for decoding
Returns:
numpy array of decoded images in [B, H, W, 3] format for single image
or [B, C, T, H, W] for sequences
"""
if latents is None:
return None
# Convert to torch tensor if needed
if not isinstance(latents, torch.Tensor):
latents = torch.from_numpy(latents).to(device, dtype=dtype)
# Unscale latents
latents = unscale_latents(latents, vae_scaler)
# Handle both single images and sequences
is_sequence = len(latents.shape) == 5 # B C T H W
# print("Sequence:", is_sequence)
if is_sequence:
B, C, T, H, W = latents.shape
latents = rearrange(latents[0], "c t h w -> t c h w")
else:
B, C, H, W = latents.shape
# print("Latents:", latents.shape)
with torch.no_grad():
# Decode latents to pixel space
# decode one by one
decoded = []
for i in range(latents.shape[0]):
decoded.append(vae.decode(latents[i : i + 1].float()).sample)
decoded = torch.cat(decoded, dim=0)
decoded = (decoded + 1) * 128
decoded = decoded.clamp(0, 255).to(torch.uint8).cpu()
if is_sequence:
# Reshape back to [B, C, T, H, W] for sequences
decoded = rearrange(decoded, "t c h w -> c t h w").unsqueeze(0)
else:
decoded = decoded.squeeze()
decoded = decoded.permute(1, 2, 0)
# print("Decoded:", decoded.shape)
return decoded.numpy()
def decode_latent_to_pixel(latent_image):
"""Decode a single latent image to pixel space"""
global vae
if latent_image is None:
return None
# Add batch dimension if needed
if len(latent_image.shape) == 3:
latent_image = latent_image[None, ...]
decoded_image = decode_images(latent_image, vae)
decoded_image = cv2.resize(
decoded_image, (400, 400), interpolation=cv2.INTER_NEAREST
)
return decoded_image
def check_privacy(latent_image_numpy, class_selection):
"""Check if the latent image is too similar to database images"""
latent_image = torch.from_numpy(latent_image_numpy).to(device, dtype=dtype)
reid_model = reid["models"][class_selection].to(device, dtype=dtype)
real_anatomies = reid["anatomies"][class_selection] # already scaled
tau = reid["tau"][class_selection]
with torch.no_grad():
features = reid_model(latent_image).sigmoid().cpu()
corr = torch.corrcoef(torch.cat([real_anatomies, features], dim=0))[0, 1:]
corr = corr.max()
if corr > tau:
return (
None,
f"⚠️ **Warning:** Generated image is too similar to training data. Privacy check failed (corr = {corr:.4f} / tau = {tau:.4f})",
)
else:
return (
latent_image_numpy,
f"✅ **Success:** Generated image passed privacy check (corr = {corr:.4f} / tau = {tau:.4f})",
)
@spaces.GPU
def generate_animation(
latent_image, ejection_fraction, sampling_steps=50, cfg_scale=1.0
):
"""Generate an animated sequence of latent images based on EF"""
# print(
# f"Generating animation with EF = {ejection_fraction}, steps = {sampling_steps}, CFG = {cfg_scale}"
# )
# print(latent_image.shape, type(latent_image))
if latent_image is None:
return None
lvefs = torch.tensor([ejection_fraction / 100.0], device=device, dtype=dtype)
lvefs = lvefs[:, None, None].to(device, dtype)
uncond_lvefs = -1 * torch.ones_like(lvefs)
ref_images = torch.from_numpy(latent_image).to(device, dtype)
ref_images = ref_images[:, :, None, :, :] # B x C x 1 x H x W
ref_images = ref_images.repeat(1, 1, T, 1, 1) # B x C x T x H x W
uncond_images = torch.zeros_like(ref_images)
timesteps = torch.linspace(
1.0, 0.0, steps=sampling_steps + 1, device=device, dtype=dtype
)
forward_kwargs = {
"encoder_hidden_states": lvefs,
"cond_image": ref_images,
}
z_1 = torch.randn(
(B, C, T, H, W),
device=device,
dtype=dtype,
generator=generator,
)
# print(
# z_1.shape,
# forward_kwargs["encoder_hidden_states"].shape,
# forward_kwargs["cond_image"].shape,
# )
lvfm.forward_original = lvfm.forward
def new_forward(self, t, y, *args, **kwargs):
kwargs = {**kwargs, **forward_kwargs}
# y has shape (B, C, T, H, W)
pred = self.forward_original(y, t.repeat(y.size(0)), *args, **kwargs).sample
if cfg_scale != 1.0:
uncond_kwargs = {
"encoder_hidden_states": uncond_lvefs,
"cond_image": uncond_images,
}
uncond_pred = self.forward_original(
y, t.repeat(y.size(0)), *args, **uncond_kwargs
).sample
pred = uncond_pred + cfg_scale * (pred - uncond_pred)
return pred
lvfm.forward = types.MethodType(new_forward, lvfm)
with torch.autocast("cuda"):
synthetic_video = odeint(
lvfm,
z_1,
timesteps,
atol=1e-5,
rtol=1e-5,
adjoint_params=lvfm.parameters(),
method="euler",
)[-1]
lvfm.forward = lvfm.forward_original
# print("Synthetic video:", synthetic_video.shape)
return synthetic_video # B x C x T x H x W
def decode_animation(latent_animation):
"""Decode a latent animation to pixel space"""
global vae
if latent_animation is None:
return None
# Convert to torch tensor if needed
if not isinstance(latent_animation, torch.Tensor):
latent_animation = torch.from_numpy(latent_animation).to(device, dtype=dtype)
# Ensure shape is B x C x T x H x W
if len(latent_animation.shape) == 4: # [T, C, H, W]
latent_animation = latent_animation[None, ...] # Add batch dimension
# Decode using VAE
decoded = decode_images(
latent_animation, vae
) # Returns B x C x T x H x W numpy array
# Remove batch dimension and transpose to T x H x W x C
decoded = np.transpose(decoded[0], (1, 2, 3, 0)) # [T, H, W, C]
# Resize frames to 400x400
decoded = np.stack(
[
cv2.resize(frame, (400, 400), interpolation=cv2.INTER_NEAREST)
for frame in decoded
]
)
# Save to temporary file
temp_file = "temp_video_2.mp4"
fps = 32
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_file, fourcc, fps, (400, 400))
# Write frames
for frame in decoded:
out.write(frame)
out.release()
return temp_file
def convert_latent_to_display(latent_image):
"""Convert multi-channel latent image to grayscale for display"""
if latent_image is None:
return None
# Check shape
if len(latent_image.shape) == 4: # [B, C, H, W]
# Remove batch dimension and average across channels
display_image = np.squeeze(latent_image, axis=0) # [C, H, W]
display_image = np.mean(display_image, axis=0) # [H, W]
elif len(latent_image.shape) == 3: # [C, H, W]
# Average across channels
display_image = np.mean(latent_image, axis=0) # [H, W]
else:
display_image = latent_image
# Normalize to 0-1 range
display_image = (display_image - display_image.min()) / (
display_image.max() - display_image.min() + 1e-8
)
# Convert to grayscale image
display_image = (display_image * 255).astype(np.uint8)
# Resize to a larger size (e.g., 400x400) using bicubic interpolation
display_image = cv2.resize(
display_image, (400, 400), interpolation=cv2.INTER_NEAREST
)
return display_image
def latent_animation_to_grayscale(latent_animation):
"""Convert multi-channel latent animation to grayscale for display"""
if latent_animation is None:
return None
# print("Input shape:", latent_animation.shape)
# Convert to numpy if it's a torch tensor
if torch.is_tensor(latent_animation):
latent_animation = latent_animation.detach().cpu().numpy()
# Handle shape B x C x T x H x W -> T x H x W
if len(latent_animation.shape) == 5: # [B, C, T, H, W]
latent_animation = np.squeeze(latent_animation, axis=0) # [C, T, H, W]
latent_animation = np.transpose(latent_animation, (1, 0, 2, 3)) # [T, C, H, W]
# print("After transpose:", latent_animation.shape)
# Average across channels
latent_animation = np.mean(latent_animation, axis=1) # [T, H, W]
# print("After channel reduction:", latent_animation.shape)
# Normalize each frame independently
min_vals = latent_animation.min(axis=(1, 2), keepdims=True)
max_vals = latent_animation.max(axis=(1, 2), keepdims=True)
latent_animation = (latent_animation - min_vals) / (max_vals - min_vals + 1e-8)
# Convert to uint8
latent_animation = (latent_animation * 255).astype(np.uint8)
# print("Before resize:", latent_animation.shape)
# Resize each frame
resized_frames = []
for frame in latent_animation:
resized = cv2.resize(frame, (400, 400), interpolation=cv2.INTER_NEAREST)
resized_frames.append(resized)
# Stack back into video
grayscale_video = np.stack(resized_frames)
# print("Final shape:", grayscale_video.shape)
# Add a dummy channel dimension for grayscale video
grayscale_video = grayscale_video[..., None].repeat(3, axis=-1) # Convert to RGB
# print("Output shape with channels:", grayscale_video.shape)
# Save to temporary file
temp_file = "temp_video.mp4"
fps = 32
# Create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_file, fourcc, fps, (400, 400))
# Write frames
for frame in grayscale_video:
out.write(frame)
out.release()
return temp_file
def create_demo():
# Define the theme and layout
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# EchoFlow Demo")
gr.Markdown("## Dataset Generation Pipeline")
gr.Markdown(
"""
### 🎯 Purpose
This demo showcases EchoFlow's ability to generate synthetic echocardiogram images and videos while preserving patient privacy. The pipeline consists of four main steps:
1. **Latent Image Generation**: Draw a mask to indicate the region where the Left Ventricle should appear. Select the desired cardiac view, and click "Generate Latent Image". This outputs a latent image, which can be decoded into a pixel space image by clicking "Decode to Pixel Space".
2. **Privacy Filter**: When clicking "Run Privacy Check", the generated image will be checked against a database of all training anatomies to ensure it is sufficiently different from real patient data.
3. **Latent Video Generation**: If the privacy check passes, the latent image can be animated into a video with the desired Ejection Fraction.
4. **Video Decoding**: The video can be decoded into a pixel space video by clicking "Decode Video".
### ⚙️ Parameters
- **Sampling Steps**: Higher values produce better quality but take longer
- **Ejection Fraction**: Controls the strength of heart contraction in the animation
- **CFG Scale**: Controls how closely the animation follows the specified conditions
"""
)
# Main container with 4 columns
with gr.Row():
# Column 1: Latent Image Generation
with gr.Column():
gr.Markdown(
'<img src="https://huggingface.co/spaces/HReynaud/EchoFlow/resolve/main/assets/h1.png" style="width: 100%; height: 75px; object-fit: contain;">'
)
gr.Markdown("### Latent Image Generation")
with gr.Row():
# Input mask (binary image)
with gr.Column(scale=1):
# gr.Markdown("#### Mask Condition")
gr.Markdown("Draw the LV mask (white = region of interest)")
# Create a black background for the canvas
black_background = np.zeros((400, 400), dtype=np.uint8)
# Load the default mask image if it exists
try:
mask_image = Image.open("assets/seg.png").convert("L")
mask_image = mask_image.resize(
(400, 400), Image.Resampling.LANCZOS
)
# Make it binary (0 or 255)
mask_image = ImageOps.autocontrast(mask_image, cutoff=0)
mask_image = mask_image.point(
lambda p: 255 if p > 127 else 0
)
mask_array = np.array(mask_image)
# Create the editor value structure
editor_value = {
"background": black_background, # Black background
"layers": [mask_array], # The mask as an editable layer
"composite": mask_array, # The composite image (what's displayed)
}
except Exception as e:
print(f"Error loading mask image: {e}")
# Fall back to empty canvas
editor_value = black_background
mask_input = gr.ImageEditor(
label="Binary Mask",
height=400,
width=400,
image_mode="L",
value=editor_value,
type="numpy",
brush=gr.Brush(
colors=["#ffffff"],
color_mode="fixed",
default_size=20,
default_color="#ffffff",
),
eraser=gr.Eraser(default_size=20),
# show_label=False,
show_download_button=True,
sources=[],
canvas_size=(400, 400),
fixed_canvas=True,
layers=False, # Enable layers to make the mask editable
)
# # Class selection
# with gr.Column(scale=1):
# gr.Markdown("#### View Condition")
class_selection = gr.Radio(
choices=["A4C", "PSAX", "PLAX"],
label="View Class",
value="A4C",
)
# gr.Markdown("#### Sampling Steps")
sampling_steps = gr.Slider(
minimum=1,
maximum=200,
value=100,
step=1,
label="Number of Sampling Steps",
info="Higher values = better quality but slower generation",
)
# Generate button
generate_btn = gr.Button("Generate Latent Image", variant="primary")
# Display area for latent image (grayscale visualization)
latent_image_display = gr.Image(
label="Latent Image",
type="numpy",
height=400,
width=400,
# show_label=False,
)
# Decode button (initially disabled)
decode_btn = gr.Button(
"Decode to Pixel Space (Optional)",
interactive=False,
variant="primary",
)
# Display area for decoded image
decoded_image_display = gr.Image(
label="Decoded Image",
type="numpy",
height=400,
width=400,
# show_label=False,
)
# Column 2: Privacy Filter
with gr.Column():
gr.Markdown(
'<img src="https://huggingface.co/spaces/HReynaud/EchoFlow/resolve/main/assets/h2.png" style="width: 100%; height: 75px; object-fit: contain;">'
)
gr.Markdown("### Privacy Filter")
gr.Markdown(
"Checks if the generated image is too similar to training data"
)
# Privacy check button
privacy_btn = gr.Button(
"Run Privacy Check", interactive=False, variant="primary"
)
# Display area for privacy result status
privacy_status = gr.Markdown("No image processed yet")
# Display area for privacy-filtered latent image
filtered_latent_display = gr.Image(
label="Filtered Latent Image", type="numpy", height=400, width=400
)
# Column 3: Animation
with gr.Column():
gr.Markdown(
'<img src="https://huggingface.co/spaces/HReynaud/EchoFlow/resolve/main/assets/h3.png" style="width: 100%; height: 75px; object-fit: contain;">'
)
gr.Markdown("### Latent Video Generation")
# Ejection Fraction slider
ef_slider = gr.Slider(
minimum=0,
maximum=100,
value=65,
label="Ejection Fraction (%)",
info="Higher values = stronger contraction",
)
# Add sampling steps slider for animation
animation_steps = gr.Slider(
minimum=1,
maximum=200,
value=100,
step=1,
label="Number of Sampling Steps",
info="Higher values = better quality but slower generation",
)
# Add CFG slider
cfg_slider = gr.Slider(
minimum=0,
maximum=10,
value=1,
step=1,
label="Classifier-Free Guidance Scale",
# info="Higher values = better quality but slower generation",
)
# Animate button
animate_btn = gr.Button(
"Generate Video", interactive=False, variant="primary"
)
# Display area for latent animation (grayscale)
latent_animation_display = gr.Video(
label="Latent Video", format="mp4", autoplay=True, loop=True
)
# Column 4: Video Decoding
with gr.Column():
gr.Markdown(
'<img src="https://huggingface.co/spaces/HReynaud/EchoFlow/resolve/main/assets/h4.png" style="width: 100%; height: 75px; object-fit: contain;">'
)
gr.Markdown("### Video Decoding")
# Decode animation button
decode_animation_btn = gr.Button(
"Decode Video", interactive=False, variant="primary"
)
# Display area for decoded animation
decoded_animation_display = gr.Video(
label="Decoded Video", format="mp4", autoplay=True, loop=True
)
# Hidden state variables to store the full latent representations
latent_image_state = gr.State(None)
filtered_latent_state = gr.State(None)
latent_animation_state = gr.State(None)
# Event handlers
generate_btn.click(
fn=generate_latent_image,
inputs=[mask_input, class_selection, sampling_steps],
outputs=[latent_image_state],
queue=True,
).then(
fn=convert_latent_to_display,
inputs=[latent_image_state],
outputs=[latent_image_display],
queue=False,
).then(
fn=lambda x: gr.Button(
interactive=x is not None
), # Properly update button state
inputs=[latent_image_state],
outputs=[decode_btn],
queue=False,
).then(
fn=lambda x: gr.Button(
interactive=x is not None
), # Properly update button state
inputs=[latent_image_state],
outputs=[privacy_btn],
queue=False,
)
decode_btn.click(
fn=decode_latent_to_pixel,
inputs=[latent_image_state],
outputs=[decoded_image_display],
queue=True,
).then(
fn=lambda x: gr.Button(
interactive=x is not None
), # Properly update button state
inputs=[decoded_image_display],
outputs=[privacy_btn],
queue=False,
)
privacy_btn.click(
fn=check_privacy,
inputs=[latent_image_state, class_selection],
outputs=[filtered_latent_state, privacy_status],
queue=True,
).then(
fn=convert_latent_to_display,
inputs=[filtered_latent_state],
outputs=[filtered_latent_display],
queue=False,
).then(
fn=lambda x: gr.Button(
interactive=x is not None
), # Properly update button state
inputs=[filtered_latent_state],
outputs=[animate_btn],
queue=False,
)
animate_btn.click(
fn=generate_animation,
inputs=[filtered_latent_state, ef_slider, animation_steps, cfg_slider],
outputs=[latent_animation_state],
queue=True,
).then(
fn=latent_animation_to_grayscale,
inputs=[latent_animation_state],
outputs=[latent_animation_display],
queue=False,
).then(
fn=lambda x: gr.Button(
interactive=x is not None
), # Properly update button state
inputs=[latent_animation_state],
outputs=[decode_animation_btn],
queue=False,
)
decode_animation_btn.click(
fn=decode_animation,
inputs=[latent_animation_state], # Remove vae_state from inputs
outputs=[decoded_animation_display],
queue=True,
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()
|