Spaces:
Running
Running
Commit
·
6e0dbd3
1
Parent(s):
1da15e5
Test
Browse files
app.py
CHANGED
@@ -153,7 +153,7 @@ with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Default(primary_hue=c
|
|
153 |
wrap=False,
|
154 |
datatype=["markdown", "html",],
|
155 |
interactive=True,
|
156 |
-
column_widths=["5%", "
|
157 |
|
158 |
with gr.Tab("Interactive Bubble Plot"):
|
159 |
with gr.Row():
|
|
|
153 |
wrap=False,
|
154 |
datatype=["markdown", "html",],
|
155 |
interactive=True,
|
156 |
+
column_widths=["5%", "28%", "10%", "15%", "6.5%", "6.5%", "6.5%", "6.5%", "6.5%", "6.5%", "6.5%"],)
|
157 |
|
158 |
with gr.Tab("Interactive Bubble Plot"):
|
159 |
with gr.Row():
|
utils.py
CHANGED
@@ -53,7 +53,7 @@ def filter_bench_all(subset: pd.DataFrame) -> pd.DataFrame:
|
|
53 |
pivot_df['Model'] = pivot_df.apply(lambda row: model_hyperlink(row["Model URL"], row["Model"]), axis=1)
|
54 |
pivot_df['Type'] = pivot_df['Model Type'].map(lambda x: type_emoji.get(x, ""))
|
55 |
pivot_df.rename(columns={
|
56 |
-
|
57 |
'Syntax (STX)': 'Avg STX',
|
58 |
'Functionality (FNC)': 'Avg FNC',
|
59 |
'Synthesis (SYN)': 'Avg SYN',
|
@@ -61,8 +61,8 @@ def filter_bench_all(subset: pd.DataFrame) -> pd.DataFrame:
|
|
61 |
'Performance': 'Avg Perf',
|
62 |
'Area': 'Avg Area',
|
63 |
}, inplace=True)
|
64 |
-
columns_order = ['Type', 'Model', 'Params', 'Average ⬆️', 'Avg STX', 'Avg FNC', 'Avg SYN', 'Avg Power', 'Avg Perf', 'Avg Area']
|
65 |
-
|
66 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
67 |
pivot_df = pivot_df.sort_values(by='Average ⬆️', ascending=False).reset_index(drop=True)
|
68 |
# pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
|
|
|
53 |
pivot_df['Model'] = pivot_df.apply(lambda row: model_hyperlink(row["Model URL"], row["Model"]), axis=1)
|
54 |
pivot_df['Type'] = pivot_df['Model Type'].map(lambda x: type_emoji.get(x, ""))
|
55 |
pivot_df.rename(columns={
|
56 |
+
'Exact Matching (EM)': 'EM',
|
57 |
'Syntax (STX)': 'Avg STX',
|
58 |
'Functionality (FNC)': 'Avg FNC',
|
59 |
'Synthesis (SYN)': 'Avg SYN',
|
|
|
61 |
'Performance': 'Avg Perf',
|
62 |
'Area': 'Avg Area',
|
63 |
}, inplace=True)
|
64 |
+
# columns_order = ['Type', 'Model', 'Params', 'Average ⬆️', 'Avg STX', 'Avg FNC', 'Avg SYN', 'Avg Power', 'Avg Perf', 'Avg Area']
|
65 |
+
columns_order = ['Type', 'Model', 'Params', 'Average ⬆️', 'Avg EM', 'Avg STX', 'Avg FNC', 'Avg SYN', 'Avg Power', 'Avg Perf', 'Avg Area']
|
66 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
67 |
pivot_df = pivot_df.sort_values(by='Average ⬆️', ascending=False).reset_index(drop=True)
|
68 |
# pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
|