Spaces:
Running
Running
Commit
·
2a6282d
1
Parent(s):
bb27f2e
remove manual counter
Browse files
app.py
CHANGED
@@ -149,10 +149,11 @@ with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Default(primary_hue=c
|
|
149 |
leaderboard = gr.DataFrame(
|
150 |
value=filter_leaderboard('VerilogEval S2R', 'All', "", 700),
|
151 |
headers="first row",
|
|
|
152 |
wrap=False,
|
153 |
-
datatype=["markdown", "
|
154 |
interactive=False,
|
155 |
-
column_widths=["
|
156 |
|
157 |
with gr.Tab("Interactive Bubble Plot"):
|
158 |
with gr.Row():
|
|
|
149 |
leaderboard = gr.DataFrame(
|
150 |
value=filter_leaderboard('VerilogEval S2R', 'All', "", 700),
|
151 |
headers="first row",
|
152 |
+
show_row_numbers=True,
|
153 |
wrap=False,
|
154 |
+
datatype=["markdown", "html",],
|
155 |
interactive=False,
|
156 |
+
column_widths=["5%", "28%", "10%", "14%"],)
|
157 |
|
158 |
with gr.Tab("Interactive Bubble Plot"):
|
159 |
with gr.Row():
|
utils.py
CHANGED
@@ -28,7 +28,7 @@ def filter_RTLRepo(subset: pd.DataFrame) -> pd.DataFrame:
|
|
28 |
filtered_df['Type'] = filtered_df['Model Type'].map(lambda x: type_emoji.get(x, ""))
|
29 |
filtered_df = filtered_df[['Type', 'Model', 'Params', 'Exact Matching (EM)']]
|
30 |
filtered_df = filtered_df.sort_values(by='Exact Matching (EM)', ascending=False).reset_index(drop=True)
|
31 |
-
filtered_df.insert(0, '', range(1, len(filtered_df) + 1))
|
32 |
return filtered_df
|
33 |
|
34 |
def filter_bench(subset: pd.DataFrame) -> pd.DataFrame:
|
@@ -42,7 +42,7 @@ def filter_bench(subset: pd.DataFrame) -> pd.DataFrame:
|
|
42 |
columns_order = ['Type', 'Model', 'Params', 'Average ⬆️', 'STX', 'FNC', 'SYN', 'Power', 'Perf', 'Area']
|
43 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
44 |
pivot_df = pivot_df.sort_values(by='Average ⬆️', ascending=False).reset_index(drop=True)
|
45 |
-
pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
|
46 |
return pivot_df
|
47 |
|
48 |
def filter_bench_all(subset: pd.DataFrame) -> pd.DataFrame:
|
@@ -64,5 +64,5 @@ def filter_bench_all(subset: pd.DataFrame) -> pd.DataFrame:
|
|
64 |
columns_order = ['Type', 'Model', 'Params', '🐢 Score (Avg of all) ⬆️', 'Avg EM', 'Avg STX', 'Avg FNC', 'Avg SYN', 'Avg Power', 'Avg Perf', 'Avg Area']
|
65 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
66 |
pivot_df = pivot_df.sort_values(by='🐢 Score (Avg of all) ⬆️', ascending=False).reset_index(drop=True)
|
67 |
-
pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
|
68 |
return pivot_df
|
|
|
28 |
filtered_df['Type'] = filtered_df['Model Type'].map(lambda x: type_emoji.get(x, ""))
|
29 |
filtered_df = filtered_df[['Type', 'Model', 'Params', 'Exact Matching (EM)']]
|
30 |
filtered_df = filtered_df.sort_values(by='Exact Matching (EM)', ascending=False).reset_index(drop=True)
|
31 |
+
# filtered_df.insert(0, '', range(1, len(filtered_df) + 1))
|
32 |
return filtered_df
|
33 |
|
34 |
def filter_bench(subset: pd.DataFrame) -> pd.DataFrame:
|
|
|
42 |
columns_order = ['Type', 'Model', 'Params', 'Average ⬆️', 'STX', 'FNC', 'SYN', 'Power', 'Perf', 'Area']
|
43 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
44 |
pivot_df = pivot_df.sort_values(by='Average ⬆️', ascending=False).reset_index(drop=True)
|
45 |
+
# pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
|
46 |
return pivot_df
|
47 |
|
48 |
def filter_bench_all(subset: pd.DataFrame) -> pd.DataFrame:
|
|
|
64 |
columns_order = ['Type', 'Model', 'Params', '🐢 Score (Avg of all) ⬆️', 'Avg EM', 'Avg STX', 'Avg FNC', 'Avg SYN', 'Avg Power', 'Avg Perf', 'Avg Area']
|
65 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
66 |
pivot_df = pivot_df.sort_values(by='🐢 Score (Avg of all) ⬆️', ascending=False).reset_index(drop=True)
|
67 |
+
# pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
|
68 |
return pivot_df
|