speecht5-darija / app.py
HAMMALE's picture
Update app.py
08c841b verified
raw
history blame contribute delete
9.8 kB
import torch
import soundfile as sf
import os
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier
# Define paths and device
model_path = "HAMMALE/speecht5-darija" # Path to your model on HF Hub
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load models
processor = SpeechT5Processor.from_pretrained(model_path)
model = SpeechT5ForTextToSpeech.from_pretrained(model_path).to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# Load speaker embedding model
speaker_model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-xvect-voxceleb",
run_opts={"device": device},
savedir=os.path.join("/tmp", "spkrec-xvect-voxceleb"),
)
# Load pre-computed speaker embeddings
male_embedding = torch.load("male_embedding.pt") if os.path.exists("male_embedding.pt") else torch.randn(1, 512)
female_embedding = torch.load("female_embedding.pt") if os.path.exists("female_embedding.pt") else torch.randn(1, 512)
# Text normalization function
def normalize_text(text):
"""Normalize text for TTS processing"""
text = text.lower()
# Keep letters, numbers, spaces and apostrophes - fixed regex
text = re.sub(r'[^\w\s\'\u0600-\u06FF]', '', text)
text = ' '.join(text.split())
return text
# Function to synthesize speech
def synthesize_speech(text, voice_type="male", speed=1.0):
"""Generate speech from text using the specified voice type"""
try:
# Select speaker embedding based on voice type
if voice_type == "male":
speaker_embeddings = male_embedding.to(device)
else:
speaker_embeddings = female_embedding.to(device)
# Normalize and tokenize input text
normalized_text = normalize_text(text)
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
# Generate speech
with torch.no_grad():
speech = model.generate_speech(
inputs["input_ids"],
speaker_embeddings,
vocoder=vocoder
)
# Convert to numpy array and adjust speed if needed
speech_np = speech.cpu().numpy()
# Apply speed adjustment (simple resampling)
if speed != 1.0:
# This is a simple approach - for production use a proper resampling library
import numpy as np
from scipy import signal
sample_rate = 16000
new_length = int(len(speech_np) / speed)
speech_np = signal.resample(speech_np, new_length)
# Save temporary audio file
output_file = "output_speech.wav"
sf.write(output_file, speech_np, 16000)
return output_file, None
except Exception as e:
return None, f"Error generating speech: {str(e)}"
# Gradio imports need to be added
import gradio as gr
# Custom CSS for a full-screen, modern design
custom_css = """
body, html {
margin: 0;
padding: 0;
height: 100%;
width: 100%;
overflow-x: hidden;
}
.gradio-container {
font-family: 'Montserrat', 'Arial', sans-serif !important;
height: 100vh;
width: 100vw;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
display: flex;
flex-direction: column;
padding: 0;
margin: 0;
overflow-y: auto;
}
.main-header {
background: linear-gradient(90deg, #d32f2f, #1976d2);
color: white;
padding: 2em;
text-align: center;
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.15);
border-bottom: 4px solid #ffffff33;
}
.main-header h1 {
font-size: 2.8em;
margin: 0;
font-weight: 700;
letter-spacing: 1px;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);
}
.main-header p {
font-size: 1.2em;
margin: 0.5em 0 0;
opacity: 0.9;
font-weight: 300;
}
.container {
max-width: 1200px;
margin: 2em auto;
padding: 0 1em;
flex: 1;
}
.row {
display: flex;
gap: 2em;
background: white;
border-radius: 15px;
padding: 2em;
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
margin-bottom: 2em;
}
.column {
flex: 1;
padding: 1em;
}
.info-box {
background: #fef6f6;
border-left: 5px solid #d32f2f;
padding: 1.5em;
border-radius: 8px;
margin-bottom: 1.5em;
font-size: 1em;
line-height: 1.6;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
.textbox textarea {
border: 2px solid #e0e0e0 !important;
border-radius: 10px !important;
padding: 1em !important;
font-size: 1.1em !important;
transition: border-color 0.3s ease !important;
}
.textbox textarea:focus {
border-color: #d32f2f !important;
box-shadow: 0 0 8px rgba(211, 47, 47, 0.2) !important;
}
.radio {
display: flex;
justify-content: center;
gap: 1.5em;
margin: 1em 0;
}
.radio label {
background: #f5f5f5;
padding: 0.8em 1.5em;
border-radius: 25px;
border: 2px solid #e0e0e0;
cursor: pointer;
transition: all 0.3s ease;
}
.radio input:checked + label {
background: #d32f2f;
color: white;
border-color: #d32f2f;
box-shadow: 0 4px 8px rgba(211, 47, 47, 0.2);
}
.slider {
margin: 1.5em 0;
}
.slider input {
accent-color: #d32f2f !important;
}
.button {
background: linear-gradient(90deg, #d32f2f, #1976d2) !important;
color: white !important;
padding: 1em 2em !important;
border-radius: 25px !important;
border: none !important;
font-size: 1.1em !important;
font-weight: 600 !important;
transition: transform 0.2s ease, box-shadow 0.3s ease !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
}
.button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.25) !important;
}
.audio {
margin-top: 1em;
}
.audio audio {
width: 100%;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.example-header {
font-weight: 600;
color: #d32f2f;
margin: 1.5em 0 0.5em;
font-size: 1.2em;
}
ul {
padding-left: 1.5em;
color: #333;
}
li {
margin: 0.5em 0;
font-size: 1em;
}
.examples {
margin-top: 1.5em;
padding: 1em;
background: #f9f9f9;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05);
}
footer {
text-align: center;
padding: 1.5em;
background: #ffffff;
color: #666;
font-size: 0.95em;
border-top: 1px solid #e0e0e0;
margin-top: auto;
}
.flag-icon {
width: 30px;
height: 30px;
vertical-align: middle;
margin-right: 10px;
}
"""
# Create Gradio interface with enhanced design
with gr.Blocks(css=custom_css) as demo:
gr.HTML(
"""
<div class="main-header">
<h1>๐Ÿ‡ฒ๐Ÿ‡ฆ Moroccan Darija Text-to-Speech ๐ŸŽ™๏ธ</h1>
<p>Transform your Darija text into lifelike speech with ease</p>
</div>
"""
)
with gr.Row(elem_classes="row"):
with gr.Column(elem_classes="column"):
gr.HTML(
"""
<div class="info-box">
<p>Experience high-quality Darija speech synthesis powered by the SpeechT5 model, fine-tuned on the DODa audio dataset. Customize the voice and speed to suit your needs.</p>
</div>
"""
)
text_input = gr.Textbox(
label="Enter Darija Text",
placeholder="Kteb chi jomla b darija hna, bhal 'Salam, kifach nta?'...",
lines=3,
elem_classes="textbox"
)
with gr.Row(elem_classes="radio"):
voice_type = gr.Radio(
["male", "female"],
label="Voice Type",
value="male"
)
speed = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speech Speed",
elem_classes="slider"
)
generate_btn = gr.Button("Generate Speech", variant="primary", elem_classes="button")
gr.HTML(
"""
<div class="example-header">Try These Phrases:</div>
<ul>
<li>"Ana Nadi Bezzaaf hhh"</li>
<li>"Lyoum ajwaa zwina bezzaaf."</li>
<li>"Lmaghrib ahssan blad fi l3alam"</li>
<li>"Chukran bzzaf 3la lmosanada!"</li>
</ul>
"""
)
with gr.Column(elem_classes="column"):
audio_output = gr.Audio(label="Generated Speech", elem_classes="audio")
error_output = gr.Textbox(label="Error (if any)", visible=False)
gr.Examples(
examples=[
["Ana Nadi Bezzaaf hhh", "male", 1.0],
["Lyoum ajwaa zwina bezzaaf.", "female", 1.0],
["Lmaghrib ahssan blad fi l3alam", "male", 1.0],
["Filistine horaa mina lbari ila lbarri", "female", 0.8],
],
inputs=[text_input, voice_type, speed],
outputs=[audio_output, error_output],
fn=synthesize_speech
)
gr.HTML(
"""
<footer>
<p>Developed by HAMMALE | Data: DODa Audio Dataset</p>
</footer>
"""
)
# Set button click action
generate_btn.click(
fn=synthesize_speech,
inputs=[text_input, voice_type, speed],
outputs=[audio_output, error_output]
)
# Launch the demo
if __name__ == "__main__":
demo.launch()