File size: 54,557 Bytes
bd7463f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 |
import os
import torch
import numpy as np
from PIL import Image
import json
import gradio as gr
import torchvision.transforms as transforms
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
from transformers import CLIPProcessor, CLIPModel
from controlnet_aux import MLSDdetector
from diffusers import (
ControlNetModel,
StableDiffusionControlNetPipeline,
StableDiffusionControlNetInpaintPipeline,
UniPCMultistepScheduler
)
from diffusers.utils import load_image
import cv2
import pickle
import faiss
import datetime
import glob
# 设置资源路径
RESOURCE_DIR = "resources"
MODELS_DIR = os.path.join(RESOURCE_DIR, "models")
IMAGES_DIR = os.path.join(RESOURCE_DIR, "images")
LABELS_DIR = os.path.join(RESOURCE_DIR, "labels")
OUTPUT_DIR = os.path.join(RESOURCE_DIR, "output")
GLOBAL_SAVE_DIR = os.path.join(OUTPUT_DIR, "global_style") # 全局风格调整保存目录
LOCAL_SAVE_DIR = os.path.join(OUTPUT_DIR, "local_style") # 局部风格调整保存目录
FEATURES_DIR = os.path.join(RESOURCE_DIR, "features") # 图像特征存储目录
INDEX_PATH = os.path.join(FEATURES_DIR, "image_features.index") # FAISS索引文件
METADATA_PATH = os.path.join(FEATURES_DIR, "image_metadata.pkl") # 图像元数据文件
# 确保输出目录存在
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(GLOBAL_SAVE_DIR, exist_ok=True)
os.makedirs(LOCAL_SAVE_DIR, exist_ok=True)
os.makedirs(FEATURES_DIR, exist_ok=True)
# 从本地JSON文件加载ADE20K数据集的标签信息
labels_path = os.path.join(LABELS_DIR, "ade20k-id2label.json")
if os.path.exists(labels_path):
with open(labels_path, 'r') as f:
LABELS = json.load(f)
else:
# 如果本地文件不存在,则从网络获取
import requests
print("本地标签文件不存在,从网络获取...")
LABELS = requests.get("https://huggingface.co/datasets/huggingface/label-files/raw/main/ade20k-id2label.json").json()
# 确保目录存在
os.makedirs(LABELS_DIR, exist_ok=True)
# 保存到本地
with open(labels_path, 'w') as f:
json.dump(LABELS, f)
# 全局变量存储加载的模型
processor = None
mask2former_model = None
mlsd_processor = None
controlnet = None
global_pipe = None
inpaint_pipe = None
segmentation_result = None
clip_processor = None
clip_model = None
faiss_index = None
image_metadata = {}
def load_models():
"""加载所有需要的模型"""
global processor, mask2former_model, mlsd_processor, controlnet, global_pipe, inpaint_pipe, clip_processor, clip_model, faiss_index, image_metadata
# 加载 Mask2Former 模型
print("加载 Mask2Former 模型...")
processor = AutoImageProcessor.from_pretrained(
"facebook/mask2former-swin-large-ade-semantic",
cache_dir=MODELS_DIR
)
mask2former_model = Mask2FormerForUniversalSegmentation.from_pretrained(
"facebook/mask2former-swin-large-ade-semantic",
cache_dir=MODELS_DIR
)
# 加载 MLSD 检测器
print("加载 MLSD 检测器...")
mlsd_processor = MLSDdetector.from_pretrained(
"lllyasviel/Annotators",
cache_dir=MODELS_DIR
)
# 加载 ControlNet 模型
print("加载 ControlNet 模型...")
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_mlsd",
torch_dtype=torch.float16,
cache_dir=MODELS_DIR,
use_safetensors=False
)
# 加载全局风格调整管道
print("加载 Stable Diffusion 全局风格调整模型...")
global_pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
cache_dir=MODELS_DIR,
use_safetensors=False
)
global_pipe.scheduler = UniPCMultistepScheduler.from_config(global_pipe.scheduler.config)
global_pipe.enable_model_cpu_offload()
# 加载局部风格调整管道
print("加载 Stable Diffusion Inpainting 局部风格调整模型...")
inpaint_pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
controlnet=controlnet,
torch_dtype=torch.float16,
cache_dir=MODELS_DIR,
use_safetensors=False
)
inpaint_pipe.scheduler = UniPCMultistepScheduler.from_config(inpaint_pipe.scheduler.config)
inpaint_pipe.enable_model_cpu_offload()
# 加载 CLIP 模型用于图像特征提取
print("加载 CLIP 模型...")
clip_processor = CLIPProcessor.from_pretrained(
"openai/clip-vit-base-patch32",
cache_dir=MODELS_DIR
)
clip_model = CLIPModel.from_pretrained(
"openai/clip-vit-base-patch32",
cache_dir=MODELS_DIR
)
# 加载或创建FAISS索引
load_or_create_index()
# 默认使用标准注意力机制
print("使用默认注意力机制")
return "所有模型加载完成!"
def extract_image_features(image):
"""
使用CLIP模型提取图像特征
Args:
image: PIL图像对象
Returns:
numpy数组,图像特征向量
"""
global clip_processor, clip_model
if clip_processor is None or clip_model is None:
return None, "请先加载模型!"
# 确保图像是PIL格式
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# 使用CLIP处理图像
with torch.no_grad():
inputs = clip_processor(images=image, return_tensors="pt")
image_features = clip_model.get_image_features(**inputs)
# 归一化特征向量
image_features = image_features / image_features.norm(dim=1, keepdim=True)
# 转换为numpy数组
features = image_features.cpu().numpy().astype('float32')
return features, "特征提取成功"
def load_or_create_index():
"""
加载现有的FAISS索引或创建新索引
"""
global faiss_index, image_metadata
# 检查索引文件是否存在
if os.path.exists(INDEX_PATH) and os.path.exists(METADATA_PATH):
print("加载现有的图像特征索引...")
try:
faiss_index = faiss.read_index(INDEX_PATH)
with open(METADATA_PATH, 'rb') as f:
image_metadata = pickle.load(f)
print(f"成功加载索引,包含 {faiss_index.ntotal} 张图像")
except Exception as e:
print(f"加载索引失败: {e}")
create_new_index()
else:
print("创建新的图像特征索引...")
create_new_index()
def create_new_index():
"""
创建新的FAISS索引并扫描现有图像
"""
global faiss_index, image_metadata
# 创建新的索引和元数据字典
feature_dim = 512 # CLIP-ViT-B/32的特征维度
faiss_index = faiss.IndexFlatIP(feature_dim) # 使用内积相似度(余弦相似度)
image_metadata = {}
# 扫描并索引现有的图像
index_existing_images()
def index_existing_images():
"""
扫描并索引现有的设计方案图像
"""
global faiss_index, image_metadata, clip_processor, clip_model
if clip_processor is None or clip_model is None:
print("CLIP模型未加载,无法索引图像")
return
# 获取所有保存的图像
global_images = glob.glob(os.path.join(GLOBAL_SAVE_DIR, "*.png"))
local_images = glob.glob(os.path.join(LOCAL_SAVE_DIR, "*.png"))
all_images = global_images + local_images
print(f"发现 {len(all_images)} 张现有图像")
# 提取并索引每张图像的特征
new_features = []
new_metadata = []
for img_path in all_images:
# 检查是否已经索引过
if img_path in image_metadata:
continue
try:
# 加载图像
img = Image.open(img_path)
# 提取特征
features, _ = extract_image_features(img)
if features is not None:
# 准备元数据
metadata = {
"path": img_path,
"filename": os.path.basename(img_path),
"type": "global" if img_path in global_images else "local",
"timestamp": datetime.datetime.fromtimestamp(os.path.getmtime(img_path)).strftime('%Y-%m-%d %H:%M:%S')
}
# 解析文件名以提取额外信息
filename = os.path.basename(img_path)
parts = filename.split('_')
if len(parts) >= 3:
metadata["room_type"] = parts[0]
metadata["style_theme"] = parts[1]
# 添加到待索引列表
new_features.append(features[0])
new_metadata.append(metadata)
# 更新元数据字典
image_metadata[img_path] = metadata
except Exception as e:
print(f"处理图像 {img_path} 时出错: {e}")
# 将新特征添加到索引
if new_features:
new_features = np.array(new_features).astype('float32')
faiss_index.add(new_features)
print(f"成功索引 {len(new_features)} 张新图像")
# 保存索引和元数据
save_index()
def save_index():
"""
保存FAISS索引和元数据到文件
"""
global faiss_index, image_metadata
if faiss_index is not None and image_metadata:
try:
faiss.write_index(faiss_index, INDEX_PATH)
with open(METADATA_PATH, 'wb') as f:
pickle.dump(image_metadata, f)
print(f"索引已保存,包含 {faiss_index.ntotal} 张图像")
except Exception as e:
print(f"保存索引失败: {e}")
def add_image_to_index(image_path, image=None):
"""
将新图像添加到索引
Args:
image_path: 图像文件路径
image: 可选,PIL图像对象
"""
global faiss_index, image_metadata, clip_processor, clip_model
if clip_processor is None or clip_model is None:
print("CLIP模型未加载,无法添加图像到索引")
return
# 检查图像是否已经在索引中
if image_path in image_metadata:
print(f"图像 {image_path} 已在索引中")
return
try:
# 加载图像(如果未提供)
if image is None:
image = Image.open(image_path)
# 提取特征
features, _ = extract_image_features(image)
if features is not None:
# 准备元数据
is_global = "global_style" in image_path
metadata = {
"path": image_path,
"filename": os.path.basename(image_path),
"type": "global" if is_global else "local",
"timestamp": datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
# 解析文件名以提取额外信息
filename = os.path.basename(image_path)
parts = filename.split('_')
if len(parts) >= 3:
metadata["room_type"] = parts[0]
metadata["style_theme"] = parts[1]
# 添加到索引
faiss_index.add(features)
# 更新元数据字典
image_metadata[image_path] = metadata
# 保存索引和元数据
save_index()
print(f"图像 {image_path} 已添加到索引")
except Exception as e:
print(f"添加图像 {image_path} 到索引时出错: {e}")
def search_similar_images(query_image, top_k=8):
"""
搜索与查询图像相似的图像
Args:
query_image: PIL图像对象或numpy数组
top_k: 返回的最相似图像数量
Returns:
相似图像的路径列表和相似度分数
"""
global faiss_index, image_metadata, clip_processor, clip_model
if faiss_index is None or clip_processor is None or clip_model is None:
return [], [], "请先加载模型!"
if faiss_index.ntotal == 0:
return [], [], "索引为空,请先生成并保存一些设计方案"
# 提取查询图像的特征
query_features, status = extract_image_features(query_image)
if query_features is None:
return [], [], status
# 执行相似度搜索
scores, indices = faiss_index.search(query_features, min(top_k, faiss_index.ntotal))
# 获取结果图像的路径和元数据
result_paths = []
result_metadata = []
for i, idx in enumerate(indices[0]):
# 获取图像路径
paths = [path for path, meta in image_metadata.items() if meta.get("index", -1) == idx]
# 如果找不到对应的索引,则使用遍历方式查找
if not paths:
# 获取所有图像路径的列表
all_paths = list(image_metadata.keys())
if idx < len(all_paths):
paths = [all_paths[idx]]
if paths:
result_paths.append(paths[0])
meta = image_metadata.get(paths[0], {})
meta["similarity"] = float(scores[0][i]) # 添加相似度分数
result_metadata.append(meta)
return result_paths, result_metadata, "搜索完成"
def get_mask_from_segmentation_map(seg_map):
"""从分割图生成掩码,每个类别对应一个掩码"""
masks, labels, label_names = [], [], []
# 定义ADE20K标签的中文翻译
chinese_labels = {
"wall": "墙壁", "building": "建筑", "sky": "天空", "floor": "地板", "tree": "树",
"ceiling": "天花板", "road": "道路", "bed": "床", "windowpane": "窗户", "grass": "草地",
"cabinet": "柜子", "sidewalk": "人行道", "person": "人", "earth": "土地", "door": "门",
"table": "桌子", "mountain": "山", "plant": "植物", "curtain": "窗帘", "chair": "椅子",
"car": "汽车", "water": "水", "painting": "画", "sofa": "沙发", "shelf": "架子",
"house": "房子", "sea": "海", "mirror": "镜子", "rug": "地毯", "field": "田野",
"armchair": "扶手椅", "seat": "座位", "fence": "栅栏", "desk": "书桌", "rock": "岩石",
"wardrobe": "衣柜", "lamp": "灯", "bathtub": "浴缸", "railing": "栏杆", "cushion": "靠垫",
"base": "底座", "box": "盒子", "column": "柱子", "signboard": "招牌", "chest of drawers": "抽屉柜",
"counter": "柜台", "sand": "沙子", "sink": "水槽", "skyscraper": "摩天大楼", "fireplace": "壁炉",
"refrigerator": "冰箱", "grandstand": "看台", "path": "小路", "stairs": "楼梯", "runway": "跑道",
"case": "箱子", "pool table": "台球桌", "pillow": "枕头", "screen door": "纱门", "stairway": "阶梯",
"river": "河流", "bridge": "桥", "bookcase": "书柜", "blind": "百叶窗", "coffee table": "咖啡桌",
"toilet": "马桶", "flower": "花", "book": "书", "hill": "山丘", "bench": "长凳",
"countertop": "台面", "stove": "炉子", "palm": "棕榈树", "kitchen island": "厨房中岛", "computer": "电脑",
"swivel chair": "旋转椅", "boat": "船", "bar": "吧台", "arcade machine": "街机", "hovel": "小屋",
"bus": "公交车", "towel": "毛巾", "light": "灯光", "truck": "卡车", "tower": "塔",
"chandelier": "吊灯", "awning": "遮阳篷", "streetlight": "路灯", "booth": "摊位", "television receiver": "电视机",
"airplane": "飞机", "dirt track": "泥路", "apparel": "服装", "pole": "杆子", "land": "陆地",
"bannister": "栏杆", "escalator": "自动扶梯", "ottoman": "脚凳", "bottle": "瓶子", "buffet": "自助餐",
"poster": "海报", "stage": "舞台", "van": "货车", "ship": "轮船", "fountain": "喷泉",
"conveyer belt": "传送带", "canopy": "天篷", "washer": "洗衣机", "plaything": "玩具", "swimming pool": "游泳池",
"stool": "凳子", "barrel": "桶", "basket": "篮子", "waterfall": "瀑布", "tent": "帐篷",
"bag": "包", "minibike": "小型摩托车", "cradle": "摇篮", "oven": "烤箱", "ball": "球",
"food": "食物", "step": "台阶", "tank": "水箱", "trade name": "商标", "microwave": "微波炉",
"pot": "锅", "animal": "动物", "bicycle": "自行车", "lake": "湖", "dishwasher": "洗碗机",
"screen": "屏幕", "blanket": "毯子", "sculpture": "雕塑", "hood": "引擎盖", "sconce": "壁灯",
"vase": "花瓶", "traffic light": "交通灯", "tray": "托盘", "ashcan": "垃圾桶", "fan": "风扇",
"pier": "码头", "crt screen": "显示器", "plate": "盘子", "monitor": "显示器", "bulletin board": "公告板",
"shower": "淋浴", "radiator": "暖气片", "glass": "玻璃", "clock": "时钟", "flag": "旗帜"
}
for label in range(150): # ADE20K数据集有150个类别
mask = np.ones((seg_map.shape[0], seg_map.shape[1]), dtype=np.uint8)
indices = (seg_map == label)
mask[indices] = 0 # 将目标区域设为0,背景为1
if indices.sum() > 0: # 如果存在该类别
masks.append(mask)
labels.append(label)
# 获取英文标签
english_label = LABELS[str(label)]
# 查找中文翻译,如果没有则使用英文
chinese_label = chinese_labels.get(english_label, english_label)
# 添加带有中文翻译的标签
label_names.append(f"{label}: {english_label} - {chinese_label}")
print(f"创建了 {len(masks)} 个掩码")
for idx, label in enumerate(labels):
print(f"索引: {idx}\t类别ID: {label}\t标签: {LABELS[str(label)]}")
return masks, labels, label_names
def segment_image(image):
"""对图像进行语义分割"""
global segmentation_result, processor, mask2former_model, mlsd_processor
if processor is None or mask2former_model is None or mlsd_processor is None:
return None, "请先加载模型!", []
# 调整图像大小
image_pil = Image.fromarray(image) if not isinstance(image, Image.Image) else image
image_pil = image_pil.resize((768, 512))
# 进行语义分割
inputs = processor(images=[image_pil], return_tensors="pt")
outputs = mask2former_model(**inputs)
predicted_semantic_map = processor.post_process_semantic_segmentation(
outputs, target_sizes=[image_pil.size[::-1]]
)[0]
# 生成分割掩码
masks, labels, label_names = get_mask_from_segmentation_map(predicted_semantic_map)
# 保存分割结果供后续使用
segmentation_result = {
"image": image_pil,
"masks": masks,
"labels": labels,
"label_names": label_names,
"semantic_map": predicted_semantic_map
}
# 生成控制图像
control_image = mlsd_processor(image_pil)
print(f"分割完成,找到 {len(label_names)} 个区域: {label_names}")
return control_image, f"图像分割完成,找到 {len(label_names)} 个可调整区域", label_names
def adjust_global_style(prompt, negative_prompt, room_type, style_theme, num_steps, guidance_scale, num_images=4):
"""全局风格调整"""
global segmentation_result, global_pipe, mlsd_processor
if segmentation_result is None:
return [None] * num_images + ["请先进行图像分割!"]
if global_pipe is None or mlsd_processor is None:
return [None] * num_images + ["请先加载模型!"]
# 获取原始图像
image = segmentation_result["image"]
# 生成控制图像
control_image = mlsd_processor(image)
# 提取英文部分(去除中文描述)
room_type = room_type.split(" - ")[0]
style_theme = style_theme.split(" - ")[0]
# 构建完整提示词,结合房间类型和风格主题
full_prompt = f"A {style_theme} style {room_type}, {prompt}"
# 设置生成参数
prompts = [full_prompt] * num_images
negative_prompts = [negative_prompt] * num_images
generator = [torch.Generator(device="cuda").manual_seed(int(i)) for i in np.random.randint(1000, size=num_images)]
# 执行图像生成
output = global_pipe(
prompts,
image=control_image, # 直接使用控制图像
negative_prompt=negative_prompts,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance_scale
)
# 保存生成的图像到临时位置
for i, img in enumerate(output.images):
img.save(os.path.join(OUTPUT_DIR, f"global_style_{i+1}.png"))
# 保存生成的图像到管道对象,以便后续保存
global_pipe._last_images = output.images
# 返回单独的图像和状态文本,而不是列表+文本
return output.images[0], output.images[1], output.images[2], output.images[3], "全局风格调整完成!"
def adjust_local_style(prompt, negative_prompt, mask_label, room_type, style_theme, num_steps, guidance_scale, num_images=4):
"""局部风格调整(Inpainting)"""
global segmentation_result, inpaint_pipe, mlsd_processor
if segmentation_result is None:
return [None] * num_images + ["请先进行图像分割!"]
if inpaint_pipe is None or mlsd_processor is None:
return [None] * num_images + ["请先加载模型!"]
# 获取原始图像和选定的掩码
image = segmentation_result["image"]
masks = segmentation_result["masks"]
labels = segmentation_result["labels"]
label_names = segmentation_result["label_names"]
# 找到选定标签对应的掩码索引
try:
if mask_label is None or mask_label == "":
return [None] * num_images + ["请选择要调整的区域"]
# 找到选中的标签在label_names中的索引
mask_id = label_names.index(mask_label)
except (ValueError, IndexError, AttributeError):
return [None] * num_images + ["无效的区域选择,请重新选择"]
# 生成控制图像
control_image = mlsd_processor(image)
# 将控制图像和原始图像混合,创建更自然的控制引导
control_tensor = transforms.ToTensor()(control_image)
image_tensor = transforms.ToTensor()(image)
mixed_control_tensor = control_tensor * 0.5 + image_tensor * 0.5
mixed_control_image = transforms.ToPILImage()(mixed_control_tensor)
# 处理掩码并创建用于修复的遮罩图像
mask = torch.Tensor(masks[mask_id])
object_mask = 1 - mask # 反转掩码,0变为1,1变为0
mask_image = transforms.ToPILImage()(object_mask.unsqueeze(0))
# 提取英文部分(去除中文描述)
room_type = room_type.split(" - ")[0]
style_theme = style_theme.split(" - ")[0]
# 构建完整提示词,结合房间类型和风格主题
full_prompt = f"A {style_theme} style {room_type}, {prompt}"
# 设置生成参数
prompts = [full_prompt] * num_images
negative_prompts = [negative_prompt] * num_images
generator = [torch.Generator(device="cuda").manual_seed(int(i)) for i in np.random.randint(1000, size=num_images)]
# 执行图像生成
output = inpaint_pipe(
prompts,
image=image,
mask_image=mask_image,
control_image=mixed_control_image,
negative_prompt=negative_prompts,
num_inference_steps=num_steps,
generator=generator,
controlnet_conditioning_scale=0.7,
guidance_scale=guidance_scale
)
# 保存生成的图像到临时位置
for i, img in enumerate(output.images):
img.save(os.path.join(OUTPUT_DIR, f"local_style_{i+1}.png"))
# 保存生成的图像到管道对象,以便后续保存
inpaint_pipe._last_images = output.images
# 返回单独的图像和状态文本,而不是列表+文本
return output.images[0], output.images[1], output.images[2], output.images[3], "局部风格调整完成!"
# 显示选定区域的掩码
def display_selected_mask(mask_label):
"""根据选择的区域标签显示对应的掩码图像"""
global segmentation_result
if segmentation_result is None:
return None, "请先进行图像分割!"
if mask_label is None or mask_label == "":
return None, "请选择要调整的区域"
try:
# 获取掩码和标签
masks = segmentation_result["masks"]
label_names = segmentation_result["label_names"]
image = segmentation_result["image"]
# 找到选中的标签在label_names中的索引
mask_id = label_names.index(mask_label)
# 获取对应的掩码
mask = masks[mask_id]
# 创建彩色掩码图像以便更好地可视化
# 创建RGB图像,将选中区域标记为红色
mask_rgb = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8)
mask_rgb[mask == 0] = [255, 0, 0] # 红色表示选中的区域
# 将原始图像和掩码混合,使掩码半透明
image_np = np.array(image)
image_np = cv2.resize(image_np, (mask.shape[1], mask.shape[0]))
# 创建混合图像
alpha = 0.5
mask_overlay = cv2.addWeighted(image_np, 1 - alpha, mask_rgb, alpha, 0)
# 将NumPy数组转换为PIL图像
mask_image = Image.fromarray(mask_overlay)
return mask_image, f"已选择区域: {mask_label}"
except (ValueError, IndexError, AttributeError) as e:
print(f"显示掩码时出错: {e}")
return None, f"无法显示所选区域: {str(e)}"
# 保存设计方案
def save_global_style(image_indices, room_type, style_theme):
"""保存全局风格调整的设计方案"""
global global_pipe
if global_pipe is None:
return "请先加载模型!"
if not hasattr(global_pipe, "_last_images") or not global_pipe._last_images:
return "没有可保存的图像!"
# 提取房间类型和风格主题的英文部分
room_type_en = room_type.split(" - ")[0]
style_theme_en = style_theme.split(" - ")[0]
# 获取当前保存目录中的文件数量,用于自增编号
existing_files = [f for f in os.listdir(GLOBAL_SAVE_DIR) if f.startswith(f"{room_type_en}_{style_theme_en}_")]
start_index = len(existing_files) + 1
saved_paths = []
for i, idx in enumerate(image_indices):
if 0 <= idx - 1 < len(global_pipe._last_images):
image = global_pipe._last_images[idx - 1]
# 构建简洁的文件名: room_style_number.png
filename = f"{room_type_en}_{style_theme_en}_{start_index + i}.png"
save_path = os.path.join(GLOBAL_SAVE_DIR, filename)
# 保存图像
image.save(save_path)
saved_paths.append(save_path)
# 将图像添加到索引
add_image_to_index(save_path, image)
if saved_paths:
return f"已保存 {len(saved_paths)} 张设计方案到 {GLOBAL_SAVE_DIR}"
else:
return "没有保存任何图像"
def save_local_style(image_indices, room_type, style_theme, mask_label):
"""保存局部风格调整的设计方案"""
global inpaint_pipe
if inpaint_pipe is None:
return "请先加载模型!"
if not hasattr(inpaint_pipe, "_last_images") or not inpaint_pipe._last_images:
return "没有可保存的图像!"
# 提取房间类型和风格主题的英文部分
room_type_en = room_type.split(" - ")[0]
style_theme_en = style_theme.split(" - ")[0]
# 提取区域标签
region_label = "unknown"
if mask_label:
try:
region_label = mask_label.split(":")[1].split("-")[0].strip()
except:
pass
# 获取当前保存目录中的文件数量,用于自增编号
existing_files = [f for f in os.listdir(LOCAL_SAVE_DIR) if f.startswith(f"{room_type_en}_{style_theme_en}_{region_label}_")]
start_index = len(existing_files) + 1
saved_paths = []
for i, idx in enumerate(image_indices):
if 0 <= idx - 1 < len(inpaint_pipe._last_images):
image = inpaint_pipe._last_images[idx - 1]
# 构建简洁的文件名: room_style_region_number.png
filename = f"{room_type_en}_{style_theme_en}_{region_label}_{start_index + i}.png"
save_path = os.path.join(LOCAL_SAVE_DIR, filename)
# 保存图像
image.save(save_path)
saved_paths.append(save_path)
# 将图像添加到索引
add_image_to_index(save_path, image)
if saved_paths:
return f"已保存 {len(saved_paths)} 张设计方案到 {LOCAL_SAVE_DIR}"
else:
return "没有保存任何图像"
def perform_image_search(query_image, top_k=8):
"""
执行图像相似度搜索并返回结果
Args:
query_image: 查询图像
top_k: 返回的结果数量
Returns:
相似图像列表、相似度分数列表和状态信息
"""
# 执行相似度搜索
result_paths, result_metadata, status = search_similar_images(query_image, top_k)
if not result_paths:
return [], [], status
# 加载结果图像和相似度分数
result_images = []
similarity_scores = []
for i, path in enumerate(result_paths):
try:
img = Image.open(path)
result_images.append(img)
# 获取相似度分数(转换为百分比)
similarity = result_metadata[i].get("similarity", 0)
similarity_percentage = f"相似度: {similarity * 100:.1f}%"
similarity_scores.append(similarity_percentage)
except Exception as e:
print(f"加载图像 {path} 时出错: {e}")
# 确保只返回请求的数量
if len(result_images) > top_k:
result_images = result_images[:top_k]
similarity_scores = similarity_scores[:top_k]
return result_images, similarity_scores, status
# 创建Gradio界面
def create_interface():
with gr.Blocks(title="AI房间设计助手", css="""
#region-dropdown .wrap {
max-height: 300px;
overflow-y: auto;
z-index: 999;
position: relative;
}
#region-dropdown .wrap::-webkit-scrollbar {
width: 10px;
}
#region-dropdown .wrap::-webkit-scrollbar-track {
background: #f1f1f1;
}
#region-dropdown .wrap::-webkit-scrollbar-thumb {
background: #888;
}
#region-dropdown .wrap::-webkit-scrollbar-thumb:hover {
background: #555;
}
.similar-image {
border: 1px solid #ddd;
border-radius: 8px;
padding: 5px;
transition: transform 0.2s;
}
.similar-image:hover {
transform: scale(1.05);
box-shadow: 0 0 10px rgba(0,0,0,0.2);
}
/* 相似图像结果滚动窗口样式 */
.similar-results-container {
max-height: 600px;
overflow-y: auto;
padding: 10px;
border: 1px solid #eee;
border-radius: 8px;
background-color: #f9f9f9;
}
.similar-results-container::-webkit-scrollbar {
width: 10px;
}
.similar-results-container::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 8px;
}
.similar-results-container::-webkit-scrollbar-thumb {
background: #888;
border-radius: 8px;
}
.similar-results-container::-webkit-scrollbar-thumb:hover {
background: #555;
}
.result-item {
margin-bottom: 15px;
}
""") as app:
gr.Markdown("# AI房间设计助手")
gr.Markdown("## 使用ControlNet和Stable Diffusion进行房间风格调整")
# 定义房间类型和风格主题选项
room_types = [
"living room - 客厅",
"bedroom - 卧室",
"kitchen - 厨房",
"bathroom - 浴室",
"dining room - 餐厅",
"office - 办公室",
"study room - 书房",
"children's room - 儿童房"
]
style_themes = [
"modern - 现代",
"minimalist - 极简",
"Scandinavian - 北欧",
"industrial - 工业风",
"rustic - 乡村",
"traditional - 传统",
"contemporary - 当代",
"mid-century modern - 中世纪现代",
"bohemian - 波西米亚",
"coastal - 海岸风",
"farmhouse - 农舍",
"luxury - 奢华"
]
# 定义提示词预设
prompt_presets = {
"简约舒适": "clean lines, comfortable seating, natural light, warm tones, simple decor",
"奢华典雅": "elegant furnishings, crystal chandelier, marble surfaces, plush seating, gold accents",
"自然原木": "wooden furniture, plants, natural materials, earth tones, organic textures",
"明亮通透": "large windows, white walls, light wood floors, minimal furniture, airy space",
"复古怀旧": "vintage furniture, retro color palette, antique accessories, classic patterns",
"工业风格": "exposed brick, metal fixtures, concrete floors, raw materials, minimal decor",
"温馨家庭": "comfortable seating, soft textiles, family photos, warm lighting, cozy atmosphere",
"艺术创意": "colorful accents, unique art pieces, creative lighting, bold patterns, artistic elements"
}
# 定义负面提示词预设
negative_prompt_presets = {
"标准负面提示词": "cluttered, dark, oversaturated, poor quality, blurry, unrealistic",
"避免过度装饰": "over decorated, cluttered, busy, chaotic, messy, disorganized",
"避免昏暗效果": "dark, gloomy, dim, shadowy, poorly lit, murky",
"避免不真实效果": "unrealistic, cartoon, anime, illustration, painting, drawing, 3d render",
"避免低质量": "poor quality, low resolution, blurry, noisy, distorted, deformed",
"避免人物": "people, person, human, face, hands, fingers",
"避免文字": "text, letters, words, signage, labels, logos",
"避免奇怪构图": "cropped, cut off, weird angle, distorted perspective, bad composition"
}
# 模型加载按钮
with gr.Row():
load_models_btn = gr.Button("加载模型")
model_status = gr.Textbox(label="模型状态", value="未加载")
# 创建选项卡界面
with gr.Tabs() as tabs:
# 全局风格调整选项卡
with gr.TabItem("全局风格调整"):
with gr.Row():
with gr.Column(scale=1):
# 输入区域
input_image = gr.Image(label="输入图像", type="pil")
segment_btn = gr.Button("分析图像结构")
# 参数设置
room_type = gr.Dropdown(label="房间类型", choices=room_types, value="living room - 客厅")
style_theme = gr.Dropdown(label="主题风格", choices=style_themes, value="modern - 现代")
# 提示词预设和输入
prompt_preset = gr.Dropdown(label="提示词预设", choices=list(prompt_presets.keys()), value="简约舒适")
prompt = gr.Textbox(label="提示词", value=prompt_presets["简约舒适"])
# 负面提示词预设和输入
negative_prompt_preset = gr.Dropdown(label="负面提示词预设", choices=list(negative_prompt_presets.keys()), value="标准负面提示词")
negative_prompt = gr.Textbox(label="负面提示词", value=negative_prompt_presets["标准负面提示词"])
num_steps = gr.Slider(label="推理步数", minimum=10, maximum=50, step=1, value=30)
guidance_scale = gr.Slider(label="引导比例", minimum=1.0, maximum=15.0, step=0.1, value=7.5)
# 生成按钮
generate_btn = gr.Button("生成设计方案")
with gr.Column(scale=1):
# 预览区域
control_image = gr.Image(label="结构控制图像")
status_text = gr.Textbox(label="状态信息")
# 结果展示区域
gr.Markdown("### 设计方案")
with gr.Row():
output_images = [gr.Image(label=f"方案 {i+1}") for i in range(2)]
with gr.Row():
output_images.extend([gr.Image(label=f"方案 {i+3}") for i in range(2)])
# 保存按钮区域
gr.Markdown("### 保存设计方案")
with gr.Row():
save_image_index = gr.CheckboxGroup(label="选择要保存的方案", choices=["方案 1", "方案 2", "方案 3", "方案 4"], value=[])
save_btn = gr.Button("保存选中的设计方案")
save_status = gr.Textbox(label="保存状态")
# 局部风格调整选项卡
with gr.TabItem("局部风格调整"):
with gr.Row():
with gr.Column(scale=1):
# 输入区域
input_image_local = gr.Image(label="输入图像", type="pil")
segment_btn_local = gr.Button("分析图像结构")
# 参数设置
region_choices = gr.Textbox(visible=False) # 隐藏的文本框用于存储区域选项
with gr.Row(elem_id="region-dropdown"):
mask_label_local = gr.Dropdown(label="选择调整区域", choices=[], interactive=True)
room_type_local = gr.Dropdown(label="房间类型", choices=room_types, value="living room - 客厅")
style_theme_local = gr.Dropdown(label="主题风格", choices=style_themes, value="modern - 现代")
# 提示词预设和输入
prompt_preset_local = gr.Dropdown(label="提示词预设", choices=list(prompt_presets.keys()), value="简约舒适")
prompt_local = gr.Textbox(label="提示词", value=prompt_presets["简约舒适"])
# 负面提示词预设和输入
negative_prompt_preset_local = gr.Dropdown(label="负面提示词预设", choices=list(negative_prompt_presets.keys()), value="标准负面提示词")
negative_prompt_local = gr.Textbox(label="负面提示词", value=negative_prompt_presets["标准负面提示词"])
num_steps_local = gr.Slider(label="推理步数", minimum=10, maximum=50, step=1, value=30)
guidance_scale_local = gr.Slider(label="引导比例", minimum=1.0, maximum=15.0, step=0.1, value=7.5)
# 生成按钮
generate_btn_local = gr.Button("生成设计方案")
update_regions_btn = gr.Button("更新区域列表", visible=False) # 隐藏的按钮用于触发更新
with gr.Column(scale=1):
# 预览区域
control_image_local = gr.Image(label="区域掩码图像")
status_text_local = gr.Textbox(label="状态信息")
# 结果展示区域
gr.Markdown("### 设计方案")
with gr.Row():
output_images_local = [gr.Image(label=f"方案 {i+1}") for i in range(2)]
with gr.Row():
output_images_local.extend([gr.Image(label=f"方案 {i+3}") for i in range(2)])
# 保存按钮区域
gr.Markdown("### 保存设计方案")
with gr.Row():
save_image_index_local = gr.CheckboxGroup(label="选择要保存的方案", choices=["方案 1", "方案 2", "方案 3", "方案 4"], value=[])
save_btn_local = gr.Button("保存选中的设计方案")
save_status_local = gr.Textbox(label="保存状态")
# 图像相似性搜索选项卡
with gr.TabItem("相似图像搜索"):
with gr.Row():
with gr.Column(scale=1):
# 输入区域
gr.Markdown("### 上传参考图像")
reference_image = gr.Image(label="参考图像", type="pil")
# 搜索参数
num_results = gr.Slider(label="搜索结果数量", minimum=2, maximum=8, step=2, value=4)
# 搜索按钮
search_btn = gr.Button("搜索相似图像")
search_status = gr.Textbox(label="搜索状态")
# 索引管理
gr.Markdown("### 索引管理")
rebuild_index_btn = gr.Button("重建图像索引")
index_status = gr.Textbox(label="索引状态")
with gr.Column(scale=1):
# 结果展示区域
gr.Markdown("### 相似图像结果")
# 创建一个带滚动条的容器来动态显示结果
with gr.Column(elem_classes="similar-results-container") as result_container:
# 创建所有可能的结果行(最多8个结果,2x2布局)
# 第一行(结果1-2)
with gr.Row(visible=True, elem_classes="result-item") as row1:
similar_images_row1 = [gr.Image(label=f"结果 {i+1}", elem_classes="similar-image") for i in range(2)]
with gr.Row(visible=True, elem_classes="result-item") as score_row1:
similarity_scores_row1 = [gr.Textbox(label="相似度", elem_classes="similarity-score") for _ in range(2)]
# 第二行(结果3-4)
with gr.Row(visible=True, elem_classes="result-item") as row2:
similar_images_row2 = [gr.Image(label=f"结果 {i+3}", elem_classes="similar-image") for i in range(2)]
with gr.Row(visible=True, elem_classes="result-item") as score_row2:
similarity_scores_row2 = [gr.Textbox(label="相似度", elem_classes="similarity-score") for _ in range(2)]
# 第三行(结果5-6)
with gr.Row(visible=True, elem_classes="result-item") as row3:
similar_images_row3 = [gr.Image(label=f"结果 {i+5}", elem_classes="similar-image") for i in range(2)]
with gr.Row(visible=True, elem_classes="result-item") as score_row3:
similarity_scores_row3 = [gr.Textbox(label="相似度", elem_classes="similarity-score") for _ in range(2)]
# 第四行(结果7-8)
with gr.Row(visible=True, elem_classes="result-item") as row4:
similar_images_row4 = [gr.Image(label=f"结果 {i+7}", elem_classes="similar-image") for i in range(2)]
with gr.Row(visible=True, elem_classes="result-item") as score_row4:
similarity_scores_row4 = [gr.Textbox(label="相似度", elem_classes="similarity-score") for _ in range(2)]
# 合并所有结果图像组件和相似度分数组件
similar_images = similar_images_row1 + similar_images_row2 + similar_images_row3 + similar_images_row4
similarity_scores = similarity_scores_row1 + similarity_scores_row2 + similarity_scores_row3 + similarity_scores_row4
# 保存所有行的引用,用于控制可见性
image_rows = [row1, row2, row3, row4]
score_rows = [score_row1, score_row2, score_row3, score_row4]
# 设置事件处理
load_models_btn.click(load_models, inputs=[], outputs=[model_status])
# 全局风格调整事件
segment_btn.click(
segment_image,
inputs=[input_image],
outputs=[control_image, status_text, region_choices]
)
# 提示词预设选择事件
def update_prompt(preset_name):
return prompt_presets.get(preset_name, "")
def update_negative_prompt(preset_name):
return negative_prompt_presets.get(preset_name, "")
prompt_preset.change(
update_prompt,
inputs=[prompt_preset],
outputs=[prompt]
)
negative_prompt_preset.change(
update_negative_prompt,
inputs=[negative_prompt_preset],
outputs=[negative_prompt]
)
# 局部风格调整的提示词预设选择事件
prompt_preset_local.change(
update_prompt,
inputs=[prompt_preset_local],
outputs=[prompt_local]
)
negative_prompt_preset_local.change(
update_negative_prompt,
inputs=[negative_prompt_preset_local],
outputs=[negative_prompt_local]
)
generate_btn.click(
adjust_global_style,
inputs=[prompt, negative_prompt, room_type, style_theme, num_steps, guidance_scale],
outputs=output_images + [status_text]
)
# 局部风格调整事件
# 分割图像并存储区域列表
def process_segmentation_local(image):
control_img, status, label_choices = segment_image(image)
# 将选项列表转换为字符串存储
choices_str = "|||".join(label_choices)
return control_img, status, choices_str
# 更新下拉菜单选项
def update_dropdown(choices_str):
if not choices_str:
return gr.Dropdown(choices=[])
choices = choices_str.split("|||")
return gr.Dropdown(choices=choices)
segment_btn_local.click(
process_segmentation_local,
inputs=[input_image_local],
outputs=[control_image_local, status_text_local, region_choices]
)
# 使用region_choices更新下拉菜单
region_choices.change(
update_dropdown,
inputs=[region_choices],
outputs=[mask_label_local]
)
# 当用户选择区域时,更新掩码图像
mask_label_local.change(
display_selected_mask,
inputs=[mask_label_local],
outputs=[control_image_local, status_text_local]
)
generate_btn_local.click(
adjust_local_style,
inputs=[prompt_local, negative_prompt_local, mask_label_local, room_type_local, style_theme_local, num_steps_local, guidance_scale_local],
outputs=output_images_local + [status_text_local]
)
# 保存设计方案事件
def process_save_global(image_indices, room_type, style_theme):
# 从选择的方案中提取索引号
indices = [int(idx.split(" ")[1]) for idx in image_indices]
return save_global_style(indices, room_type, style_theme)
def process_save_local(image_indices, room_type, style_theme, mask_label):
# 从选择的方案中提取索引号
indices = [int(idx.split(" ")[1]) for idx in image_indices]
return save_local_style(indices, room_type, style_theme, mask_label)
# 全局风格调整保存按钮事件
save_btn.click(
process_save_global,
inputs=[save_image_index, room_type, style_theme],
outputs=[save_status]
)
# 局部风格调整保存按钮事件
save_btn_local.click(
process_save_local,
inputs=[save_image_index_local, room_type_local, style_theme_local, mask_label_local],
outputs=[save_status_local]
)
# 图像相似性搜索事件
def handle_image_search(query_image, num_results):
"""处理图像相似性搜索请求"""
if query_image is None:
# 返回空结果列表,每个图像组件对应一个None
empty_results = [None] * 8 # 固定返回8个None,对应8个图像组件
empty_scores = [""] * 8 # 固定返回8个空字符串,对应8个相似度标签
# 隐藏所有额外结果行
for row in image_rows[1:]:
row.update(visible=False)
for row in score_rows[1:]:
row.update(visible=False)
return empty_results + empty_scores + ["请先上传参考图像"]
# 执行相似度搜索,只获取用户请求的数量
result_images, similarity_scores, status = perform_image_search(query_image, int(num_results))
# 打印调试信息
print(f"请求的结果数量: {num_results}")
print(f"实际返回的结果数量: {len(result_images)}")
# 清空所有结果
padded_results = [None] * 8
padded_scores = [""] * 8
# 填充实际结果
for i in range(min(len(result_images), 8)):
padded_results[i] = result_images[i]
padded_scores[i] = similarity_scores[i]
# 控制结果行的可见性
for i, row in enumerate(image_rows):
row.update(visible=i < len(result_images))
for i, row in enumerate(score_rows):
row.update(visible=i < len(result_images))
# 返回图像列表、相似度分数列表和状态文本
return padded_results + padded_scores + [f"找到 {len(result_images)} 个相似图像"]
# 绑定搜索按钮事件
search_btn.click(
handle_image_search,
inputs=[reference_image, num_results],
outputs=similar_images + similarity_scores + [search_status]
)
# 重建索引事件
def rebuild_image_index():
"""重建图像特征索引"""
global faiss_index, image_metadata
# 创建新的索引
create_new_index()
# 返回索引状态
if faiss_index is not None:
return f"索引重建完成,共索引了 {faiss_index.ntotal} 张图像"
else:
return "索引重建失败"
# 绑定重建索引按钮事件
rebuild_index_btn.click(
rebuild_image_index,
inputs=[],
outputs=[index_status]
)
return app
# 启动应用
if __name__ == "__main__":
app = create_interface()
app.launch(share=True)
|