File size: 17,522 Bytes
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import dac
import numpy as np
import torch
import torchaudio
from huggingface_hub import hf_hub_download

from .audio import audio_to_codebook, codebook_to_audio
from .config import DiaConfig
from .layers import DiaModel, KVCache


def _sample_next_token(
    logits_BCxV: torch.Tensor,
    temperature: float,
    top_p: float,
    use_cfg_filter: bool,
    cfg_filter_top_k: int | None = None,
) -> torch.Tensor:
    if temperature == 0.0:
        return torch.argmax(logits_BCxV, dim=-1)

    logits_BCxV = logits_BCxV / temperature
    if use_cfg_filter and cfg_filter_top_k is not None:
        _, top_k_indices_BCxV = torch.topk(logits_BCxV, k=cfg_filter_top_k, dim=-1)
        mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
        mask.scatter_(dim=-1, index=top_k_indices_BCxV, value=False)
        logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)

    if top_p < 1.0:
        probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
        sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(probs_BCxV, dim=-1, descending=True)
        cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)

        # Calculate indices to remove based on top_p
        sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
        # Shift the mask to the right to keep the first token above the threshold
        sorted_indices_to_remove_BCxV[..., 1:] = sorted_indices_to_remove_BCxV[..., :-1].clone()
        sorted_indices_to_remove_BCxV[..., 0] = 0  # Always keep the most probable token

        indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
        indices_to_remove_BCxV.scatter_(dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV)
        logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)

    final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)

    sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
    sampled_indices_C = sampled_indices_BC.squeeze(-1)
    return sampled_indices_C


class Dia:
    def __init__(self, config: DiaConfig, device: torch.device = torch.device("cuda")):
        """Initializes the Dia model.

        Args:
            config: The configuration object for the model.
            device: The device to load the model onto.

        Raises:
            RuntimeError: If there is an error loading the DAC model.
        """
        super().__init__()
        self.config = config
        self.device = device
        self.model = DiaModel(config)
        self.dac_model = None

    @classmethod
    def from_local(cls, config_path: str, checkpoint_path: str, device: torch.device = torch.device("cuda")) -> "Dia":
        """Loads the Dia model from local configuration and checkpoint files.

        Args:
            config_path: Path to the configuration JSON file.
            checkpoint_path: Path to the model checkpoint (.pth) file.
            device: The device to load the model onto.

        Returns:
            An instance of the Dia model loaded with weights and set to eval mode.

        Raises:
            FileNotFoundError: If the config or checkpoint file is not found.
            RuntimeError: If there is an error loading the checkpoint.
        """
        config = DiaConfig.load(config_path)
        if config is None:
            raise FileNotFoundError(f"Config file not found at {config_path}")

        dia = cls(config, device)

        try:
            dia.model.load_state_dict(torch.load(checkpoint_path, map_location=device))
        except FileNotFoundError:
            raise FileNotFoundError(f"Checkpoint file not found at {checkpoint_path}")
        except Exception as e:
            raise RuntimeError(f"Error loading checkpoint from {checkpoint_path}") from e

        dia.model.to(device)
        dia.model.eval()
        dia._load_dac_model()
        return dia

    @classmethod
    def from_pretrained(
        cls, model_name: str = "nari-labs/Dia-1.6B", device: torch.device = torch.device("cuda")
    ) -> "Dia":
        """Loads the Dia model from a Hugging Face Hub repository.

        Downloads the configuration and checkpoint files from the specified
        repository ID and then loads the model.

        Args:
            model_name: The Hugging Face Hub repository ID (e.g., "NariLabs/Dia-1.6B").
            device: The device to load the model onto.

        Returns:
            An instance of the Dia model loaded with weights and set to eval mode.

        Raises:
            FileNotFoundError: If config or checkpoint download/loading fails.
            RuntimeError: If there is an error loading the checkpoint.
        """
        config_path = hf_hub_download(repo_id=model_name, filename="config.json")
        checkpoint_path = hf_hub_download(repo_id=model_name, filename="dia-v0_1.pth")
        return cls.from_local(config_path, checkpoint_path, device)

    def _load_dac_model(self):
        try:
            dac_model_path = dac.utils.download()
            dac_model = dac.DAC.load(dac_model_path).to(self.device)
        except Exception as e:
            raise RuntimeError("Failed to load DAC model") from e
        self.dac_model = dac_model

    def _create_attn_mask(
        self,
        q_padding_mask_1d: torch.Tensor,
        k_padding_mask_1d: torch.Tensor,
        is_causal: bool = False,
    ) -> torch.Tensor:
        """
        Creates the attention mask (self or cross) mimicking JAX segment ID logic.
        """
        B1, Tq = q_padding_mask_1d.shape
        B2, Tk = k_padding_mask_1d.shape
        assert B1 == B2, "Query and key batch dimensions must match"

        p_mask_q = q_padding_mask_1d.unsqueeze(2)  # Shape [B, Tq, 1]
        p_mask_k = k_padding_mask_1d.unsqueeze(1)  # Shape [B, 1, Tk]

        # Condition A: Non-padding query attends to non-padding key
        non_pad_attends_non_pad = p_mask_q & p_mask_k  # Shape [B, Tq, Tk]

        # Condition B: Padding query attends to padding key
        pad_attends_pad = (~p_mask_q) & (~p_mask_k)  # Shape [B, Tq, Tk]

        # Combine: True if padding status is compatible (both non-pad OR both pad)
        # This implementation follows Jax TPU splash attention kernel
        mask = non_pad_attends_non_pad | pad_attends_pad  # Shape [B, Tq, Tk]

        if is_causal:
            # Ensure causality for self-attention (Tq == Tk)
            assert Tq == Tk, "Causal mask requires query and key sequence lengths to be equal"
            # Standard lower-triangular causal mask (True means allow)
            causal_mask_2d = torch.tril(torch.ones((Tq, Tk), dtype=torch.bool, device=self.device))  # Shape [Tq, Tk]
            causal_mask = mask & causal_mask_2d  # Shape [B, Tq, Tk]
            return causal_mask.unsqueeze(1)  # Shape [B, 1, Tq, Tk] for broadcasting across heads
        else:
            # For cross-attention or non-causal self-attention
            return mask.unsqueeze(1)  # Shape [B, 1, Tq, Tk] for broadcasting across heads

    def _prepare_text_input(self, text: str) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """Encodes text prompt, pads, and creates attention mask and positions."""
        text_pad_value = self.config.data.text_pad_value
        max_len = self.config.data.text_length

        byte_text = text.encode("utf-8")
        replaced_bytes = byte_text.replace(b"[S1]", b"\x01").replace(b"[S2]", b"\x02")
        text_tokens = list(replaced_bytes)

        current_len = len(text_tokens)
        padding_needed = max_len - current_len
        if padding_needed <= 0:
            text_tokens = text_tokens[:max_len]
            padded_text_np = np.array(text_tokens, dtype=np.uint8)
        else:
            padded_text_np = np.pad(
                text_tokens,
                (0, padding_needed),
                mode="constant",
                constant_values=text_pad_value,
            ).astype(np.uint8)

        src_tokens = torch.from_numpy(padded_text_np).to(torch.long).to(self.device).unsqueeze(0)  # [1, S]
        src_positions = torch.arange(max_len, device=self.device).to(torch.long).unsqueeze(0)  # [1, S]

        src_padding_mask = (src_tokens != text_pad_value).to(self.device)  # [1, S]

        enc_self_attn_mask = self._create_attn_mask(src_padding_mask, src_padding_mask, is_causal=False)  # [1, S, S]

        return src_tokens, src_positions, src_padding_mask, enc_self_attn_mask

    @torch.inference_mode()
    def generate(
        self,
        text: str,
        max_tokens: int | None = None,
        cfg_scale: float = 3.0,
        temperature: float = 1.3,
        top_p: float = 0.95,
        use_cfg_filter: bool = True,
        use_torch_compile: bool = True,
        cfg_filter_top_k: int = 100,
        audio_prompt_path: str | None = None,
    ) -> np.ndarray:
        """
        Generates audio from a text prompt (and optional audio prompt) using the Nari model.

        Returns:
            A tensor of generated audio codes (shape: [max_tokens, num_channels]).
        """
        num_channels = self.config.data.channels
        audio_bos_value = self.config.data.audio_bos_value
        audio_eos_value = self.config.data.audio_eos_value
        audio_pad_value = self.config.data.audio_pad_value
        delay_pattern = self.config.data.delay_pattern
        max_tokens = self.config.data.audio_length if max_tokens is None else max_tokens
        delay_tensor = torch.tensor(delay_pattern, dtype=torch.long, device=self.device)
        max_delay_pattern = max(delay_pattern)
        self.model.eval()

        (
            cond_src_BxS,
            cond_src_positions_BxS,
            cond_src_padding_mask_BxS,
            cond_enc_self_attn_mask_Bx1xSxS,
        ) = self._prepare_text_input(text)

        unc_src_BxS = torch.zeros_like(cond_src_BxS)
        src_BxS = torch.cat([unc_src_BxS, cond_src_BxS], dim=0)
        src_positions_BxS = cond_src_positions_BxS.expand(2, -1)
        src_padding_mask_BxS = cond_src_padding_mask_BxS.expand(2, -1)
        enc_self_attn_mask_Bx1xSxS = cond_enc_self_attn_mask_Bx1xSxS.expand(2, -1, -1, -1)

        # 2. Encoder Pass
        # with torch.autocast(device_type="cuda", dtype=forward_dtype):
        encoder_out = self.model.encoder(
            x_ids=src_BxS,
            src_positions=src_positions_BxS,
            deterministic=True,
            attn_mask=enc_self_attn_mask_Bx1xSxS,
        )  # Shape: (B, S, E)

        # 3. Prepare Decoder Inputs
        # 3-1. Allocate KV Cache (Static)
        decoder_cross_attention_cache: list[KVCache] = self.model.decoder.precompute_cross_attention_kv(
            max_tokens, encoder_out, src_positions_BxS
        )

        decoder_self_attention_cache: list[KVCache] = []
        for _ in range(self.model.decoder.num_layers):
            decoder_self_attention_cache.append(
                KVCache(
                    self.config.model.decoder.gqa_query_heads,
                    max_tokens,
                    self.config.model.decoder.gqa_head_dim,
                    self.device,
                )
            )

        # 3-2. Initialize Decoder Inputs
        generated_BxTxC = torch.full(
            (2, 1, num_channels),
            fill_value=audio_bos_value,
            dtype=torch.long,
            device=self.device,
        )

        current_step = 0
        prompt_len_inc_bos = 1  # Start with BOS length

        # 3-3. Load Audio Prompt (if provided)
        if audio_prompt_path is not None:
            audio_prompt, sr = torchaudio.load(audio_prompt_path, channels_first=True)  # C, T
            if sr != 44100:  # Resample to 44.1kHz
                audio_prompt = torchaudio.functional.resample(audio_prompt, sr, 44100)
            audio_prompt = audio_prompt.to(self.device).unsqueeze(0)  # 1, C, T
            audio_prompt = audio_to_codebook(self.dac_model, audio_prompt, data_config=self.config.data)
            generated_BxTxC = torch.cat([generated_BxTxC, audio_prompt.expand(2, -1, -1)], dim=1)

            prefill_len = generated_BxTxC.shape[1]
            prompt_len_inc_bos = prefill_len
            prefill_tgt_pos = torch.arange(prefill_len, device=self.device).unsqueeze(0).expand(2, -1)
            prefill_tgt_padding_mask = (generated_BxTxC != audio_pad_value).any(dim=2)

            prefill_self_attn_mask = self._create_attn_mask(
                prefill_tgt_padding_mask,
                prefill_tgt_padding_mask,
                is_causal=True,
            )
            prefill_cross_attn_mask = self._create_attn_mask(
                prefill_tgt_padding_mask,
                src_padding_mask_BxS,
                is_causal=False,
            )

            _ = self.model.decoder.forward(
                tgt_ids_BxTxC=generated_BxTxC,
                encoder_out=encoder_out,
                tgt_positions=prefill_tgt_pos,
                src_positions=src_positions_BxS,
                deterministic=True,
                self_attn_mask=prefill_self_attn_mask,
                cross_attn_mask=prefill_cross_attn_mask,
                self_attention_cache=decoder_self_attention_cache,
                cross_attention_cache=decoder_cross_attention_cache,
            )

            current_step = prefill_len - 1

        # 4. Autoregressive Generation Loop
        eos_detected_channel_0 = False
        eos_countdown = -1
        extra_steps_after_eos = 30
        # Make generated_BxTxC a fixed size tensor
        # Length is either 1 + max tokens or 1 + prompt len + max tokens
        generated_BxTxC = torch.cat(
            [
                generated_BxTxC,
                torch.full(
                    (2, max_tokens, num_channels),
                    fill_value=-1,
                    dtype=torch.long,
                    device=self.device,
                ),
            ],
            dim=1,
        )

        decode_step = self.model.decoder.decode_step
        if use_torch_compile:
            decode_step = torch.compile(
                self.model.decoder.decode_step,
                mode="default",
            )

        tgt_padding_mask = (
            (generated_BxTxC[:, -1, :].unsqueeze(1) != audio_pad_value).any(dim=2).to(self.device)
        )  # [B, 1]
        # Generated tokens are never PAD, so we use fixed mask
        decoder_cross_attn_mask = self._create_attn_mask(
            tgt_padding_mask,  # Query mask [B, 1]
            src_padding_mask_BxS,  # Key mask [B, S]
            is_causal=False,
        )  # [B, 1, 1, S]

        for step in range(current_step, current_step + max_tokens):
            tgt_ids_Bx1xC = generated_BxTxC[:, step, :].unsqueeze(1)
            tgt_pos_Bx1 = torch.full(
                (2, 1),
                fill_value=step,
                dtype=torch.long,
                device=self.device,
            )

            logits_Bx1xCxV, new_cache = decode_step(
                tgt_ids_Bx1xC=tgt_ids_Bx1xC,
                tgt_pos_Bx1=tgt_pos_Bx1,
                encoder_out=encoder_out,
                self_attn_mask=None,
                cross_attn_mask=decoder_cross_attn_mask,
                self_attention_cache=decoder_self_attention_cache,
                cross_attention_cache=decoder_cross_attention_cache,
            )

            for i, layer_cache in enumerate(decoder_self_attention_cache):
                layer_cache.update_cache(new_cache[i][0], new_cache[i][1])

            V = self.config.model.tgt_vocab_size
            logits_last_BxCxV = logits_Bx1xCxV[:, -1, :, :]  # B, C, V
            uncond_logits_CxV = logits_last_BxCxV[0, :, :]
            cond_logits_CxV = logits_last_BxCxV[1, :, :]

            cfg_logits_CxV = cond_logits_CxV + cfg_scale * (cond_logits_CxV - uncond_logits_CxV)

            logits_CxV = cfg_logits_CxV.reshape((-1, V))  # C, V
            logits_CxV[:, 1025:] = -torch.inf

            # Sample next token
            pred_C = _sample_next_token(
                logits_CxV.float(),
                temperature=temperature,
                top_p=top_p,
                use_cfg_filter=use_cfg_filter,
                cfg_filter_top_k=cfg_filter_top_k,
            )

            generation_step_index = step - current_step
            if audio_prompt_path is None:
                pred_C = torch.where(
                    generation_step_index >= delay_tensor,
                    pred_C,
                    audio_bos_value,
                )

            generated_BxTxC[:, step + 1, :] = pred_C.unsqueeze(0).expand(2, -1)

            if not eos_detected_channel_0 and pred_C[0] == audio_eos_value:
                eos_detected_channel_0 = True
                eos_countdown = extra_steps_after_eos

            if eos_countdown > 0:
                step_after_eos = max_delay_pattern - eos_countdown
                for i, d in enumerate(delay_pattern):
                    if step_after_eos == d:
                        generated_BxTxC[:, step + 1, i] = audio_eos_value
                    elif step_after_eos > d:
                        generated_BxTxC[:, step + 1, i] = audio_pad_value
                eos_countdown -= 1
                if eos_countdown == 0:
                    break

            generation_step_index = step - current_step + 1

        output_codes = generated_BxTxC[:, prompt_len_inc_bos : step + 1, :]

        generated_codes = output_codes[0]

        audio = codebook_to_audio(
            generated_codes.transpose(1, 0), self.dac_model, delay_pattern, B=1, T=max_tokens, C=num_channels
        )
        return audio.squeeze().cpu().numpy()