Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,268 Bytes
0108542 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
from tqdm import tqdm
from typing import Iterable, List, Union
from transformers import PreTrainedModel, PreTrainedTokenizer
import torch
from torch import nn
from sklearn.linear_model import LinearRegression
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
def extract_token_i_hidden_states(
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
inputs: Union[str, List[str]],
token_idx_to_extract: int = -1,
batch_size: int = 1,
layers_to_extract: List[int] = None,
return_dict: bool = True,
verbose: bool = True,
) -> torch.Tensor:
device = model.device
model.eval()
if isinstance(inputs, str):
inputs = [inputs]
if layers_to_extract is None:
layers_to_extract = list(range(1, model.config.num_hidden_layers + 1)) # extract all but initial embeddings
all_hidden_states = {layer: [] for layer in layers_to_extract}
with torch.no_grad():
for i in tqdm(range(0, len(inputs), batch_size), desc="Extracting hidden states", unit="batch", disable=not verbose):
input_ids = tokenizer(inputs[i:i+batch_size], return_tensors="pt", return_attention_mask=False)['input_ids']
try:
outputs = model(input_ids.to(device), output_hidden_states=True)
except:
import pdb; pdb.set_trace()
# from transformers import AutoModelForCausalLM
# model2 = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", torch_dtype=torch.bfloat16).to(device)
for input_i in range(len(input_ids)):
for layer in layers_to_extract:
hidden_states = outputs.hidden_states[layer]
all_hidden_states[layer].append(hidden_states[:, token_idx_to_extract, :].detach().cpu())
for layer in all_hidden_states:
all_hidden_states[layer] = torch.concat(all_hidden_states[layer], dim=0)
if not return_dict:
all_hidden_states = torch.concat([all_hidden_states[layer] for layer in layers_to_extract], dim=0)
return all_hidden_states
def extract_vocab_hidden_states(
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
tokens_ids_to_extract: Iterable[int] = None,
prompt: str = "{target}",
prompt_target: str = "{target}",
batch_size: int = 128,
layers_to_extract: List[int] = None
) -> torch.Tensor:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
if layers_to_extract is None:
layers_to_extract = list(range(1, model.config.num_hidden_layers + 1)) # extract all but initial embeddings
all_hidden_states = {layer: [] for layer in layers_to_extract}
tokens_ids_to_extract = tokens_ids_to_extract if tokens_ids_to_extract is not None else range(tokenizer.vocab_size)
tokens_to_extract = [tokenizer.decode(tok_id) for tok_id in tokens_ids_to_extract]
# add pad token if necessary
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
with torch.no_grad():
for i in tqdm(range(0, len(tokens_to_extract), batch_size), desc="Extracting hidden states", unit="batch"):
prompts = [prompt.replace(prompt_target, target) for target in tokens_to_extract[i:i+batch_size]]
input_ids = tokenizer(prompts, return_tensors="pt", padding=True, padding_side="left")["input_ids"]
# input_ids = tokenizer(prompts, return_tensors="pt")["input_ids"]
outputs = model(input_ids.to(device), output_hidden_states=True)
for layer in layers_to_extract:
hidden_states = outputs.hidden_states[layer]
all_hidden_states[layer].append(hidden_states[:, -1, :].detach().cpu())
for layer in all_hidden_states:
all_hidden_states[layer] = torch.concat(all_hidden_states[layer], dim=0)
return all_hidden_states
def get_vocab_tokens(tokenizer: PreTrainedTokenizer, min_word_len: int = None):
vocab_size = tokenizer.vocab_size
tokens = list(range(vocab_size))
if min_word_len:
tokens_str = [tokenizer.decode(i) for i in tokens]
tokens_len = [len(x) for x in tokens_str]
tokens = [tok for tok, tok_len in zip(tokens, tokens_len) if tok_len >= min_word_len]
return tokens
def learn_linear_map(X: torch.Tensor, Y: torch.Tensor, fit_intercept=False):
input_dtype = X.dtype
linear_reg = LinearRegression(fit_intercept=fit_intercept).fit(X.cpu().to(float).numpy(), Y.cpu().to(float).numpy())
linear_map = nn.Linear(X.size(1), Y.size(1), bias=fit_intercept)
with torch.no_grad():
linear_map.weight.data = torch.Tensor(linear_reg.coef_.T)
if fit_intercept:
linear_map.bias.data = torch.Tensor(linear_reg.intercept_)
linear_map = linear_map.to(input_dtype)
return linear_map
def train_model(
model,
dataloader,
optimizer,
loss_func="mse",
scheduler=None,
num_epochs=5,
gradient_accumulation_steps=1,
max_grads_norm=1.0,
):
"""
Trains a two-layer MLP to map hidden states from X to Y.
Parameters:
X (torch.Tensor): Input tensor of shape (N, D).
Y (torch.Tensor): Target tensor of shape (N, D).
activation_func (nn.Module): Activation function for the hidden layer. Default is SiLU.
lr (float): Learning rate. Default is 0.001.
weight_decay (float): Weight decay for the optimizer. Default is 0.0.
loss_func (str): Loss function to use ('mse', 'huber', 'cosine'). Default is 'mse'.
lr_schedule (str): Learning rate schedule. Default is 'linear'.
num_epochs (int): Number of training epochs. Default is 20.
batch_size (int): Batch size for DataLoader. Default is 32.
gradient_accumulation_steps (int): Number of steps to accumulate gradients. Default is 1.
Returns:
nn.Module: Trained MLP model.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Select loss function
if loss_func == "mse":
criterion = nn.MSELoss()
elif loss_func == "huber":
criterion = nn.HuberLoss()
elif loss_func == "cosine":
criterion = nn.CosineEmbeddingLoss()
else:
raise ValueError("Unsupported loss function. Choose from 'mse', 'huber', or 'cosine'.")
# Training loop
model.train()
for epoch in range(num_epochs):
epoch_loss = 0.0
for i, (x_batch, y_batch) in enumerate(dataloader):
outputs = model(x_batch.to(device))
if loss_func == "cosine":
# Cosine loss requires an additional target tensor of 1s
loss = criterion(outputs, y_batch.to(device), torch.ones(x_batch.size(0)))
else:
loss = criterion(outputs, y_batch.to(device))
loss = loss / gradient_accumulation_steps
loss.backward()
if max_grads_norm is not None:
nn.utils.clip_grad_norm_(model.parameters(), max_grads_norm)
if (i + 1) % gradient_accumulation_steps == 0 or (i + 1) == len(dataloader):
optimizer.step()
optimizer.zero_grad()
if scheduler:
scheduler.step()
epoch_loss += loss.item() * gradient_accumulation_steps
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {epoch_loss / len(dataloader):.6f}")
return model.cpu()
def learn_mlp(
X: torch.Tensor, Y: torch.Tensor,
activation_func=nn.SiLU,
batch_size=128,
lr=0.001,
weight_decay=0.0,
loss_func="mse",
lr_schedule="linear",
expansion_alpha=1.0,
num_epochs=5,
gradient_accumulation_steps=1,
max_grads_norm=1.0,
):
"""
Trains a two-layer MLP to map hidden states from X to Y.
Parameters:
X (torch.Tensor): Input tensor of shape (N, D).
Y (torch.Tensor): Target tensor of shape (N, D).
activation_func (nn.Module): Activation function for the hidden layer. Default is SiLU.
lr (float): Learning rate. Default is 0.001.
weight_decay (float): Weight decay for the optimizer. Default is 0.0.
loss_func (str): Loss function to use ('mse', 'huber', 'cosine'). Default is 'mse'.
lr_schedule (str): Learning rate schedule. Default is 'linear'.
num_epochs (int): Number of training epochs. Default is 20.
batch_size (int): Batch size for DataLoader. Default is 32.
gradient_accumulation_steps (int): Number of steps to accumulate gradients. Default is 1.
Returns:
nn.Module: Trained MLP model.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_dim = X.shape[1]
hidden_dim = int(input_dim * expansion_alpha)
output_dim = Y.shape[1]
model = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
activation_func(),
nn.Linear(hidden_dim, output_dim)
).to(device)
# Optimizer
optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
# DataLoader setup
dataset = TensorDataset(X, Y)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Learning rate scheduler
if lr_schedule == "linear":
total_steps = (len(dataloader) * num_epochs) // gradient_accumulation_steps
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda step: 1 - step / total_steps)
else:
scheduler = None
return train_model(
model,
dataloader,
optimizer,
loss_func=loss_func,
scheduler=scheduler,
num_epochs=num_epochs,
gradient_accumulation_steps=gradient_accumulation_steps,
max_grads_norm=max_grads_norm,
)
class FFN(nn.Module):
def __init__(self, input_dim):
super(FFN, self).__init__()
self.gate_proj = nn.Linear(input_dim, input_dim)
self.activation = nn.SiLU()
self.map_proj = nn.Linear(input_dim, input_dim)
def forward(self, x):
return (self.activation(self.gate_proj(x)) * x) + self.map_proj(x)
def learn_ffn(
X: torch.Tensor, Y: torch.Tensor,
activation_func=nn.SiLU,
batch_size=128,
lr=0.001,
weight_decay=0.0,
loss_func="mse",
lr_schedule="linear",
num_epochs=5,
gradient_accumulation_steps=1,
max_grads_norm=1.0,
):
"""
Trains a two-layer MLP to map hidden states from X to Y.
Parameters:
X (torch.Tensor): Input tensor of shape (N, D).
Y (torch.Tensor): Target tensor of shape (N, D).
activation_func (nn.Module): Activation function for the hidden layer. Default is SiLU.
lr (float): Learning rate. Default is 0.001.
weight_decay (float): Weight decay for the optimizer. Default is 0.0.
loss_func (str): Loss function to use ('mse', 'huber', 'cosine'). Default is 'mse'.
lr_schedule (str): Learning rate schedule. Default is 'linear'.
num_epochs (int): Number of training epochs. Default is 20.
batch_size (int): Batch size for DataLoader. Default is 32.
gradient_accumulation_steps (int): Number of steps to accumulate gradients. Default is 1.
Returns:
nn.Module: Trained MLP model.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_dim = X.shape[1]
model = FFN(input_dim).to(device)
# Optimizer
optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
# DataLoader setup
dataset = TensorDataset(X, Y)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Learning rate scheduler
if lr_schedule == "linear":
total_steps = (len(dataloader) * num_epochs) // gradient_accumulation_steps
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda step: 1 - step / total_steps)
else:
scheduler = None
return train_model(
model,
dataloader,
optimizer,
loss_func=loss_func,
scheduler=scheduler,
num_epochs=num_epochs,
gradient_accumulation_steps=gradient_accumulation_steps,
max_grads_norm=max_grads_norm,
)
|