File size: 8,975 Bytes
0108542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import re
from datasets import load_dataset, Dataset, DatasetDict
from itertools import chain
from tqdm import tqdm
from collections import Counter
from accelerate import Accelerator

LANGUAGES_TO_DECODE_FROM_BYTES = ["he", "fr", "uk"]
STREAMING_DATASETS = ["fineweb-edu"]


def load_pg19_val_and_test():
    # Load the dataset in streaming mode
    streaming_dataset = load_dataset("deepmind/pg19", split=None, streaming=True)

    # Extract test and validation splits
    test_split = list(streaming_dataset["test"])
    validation_split = list(streaming_dataset["validation"])

    # Convert them into regular datasets
    test_dataset = Dataset.from_list(test_split)
    validation_dataset = Dataset.from_list(validation_split)

    # validation_dataset = load_dataset("deepmind/pg19", split="validation")
    # test_dataset = load_dataset("deepmind/pg19", split="test")

    return DatasetDict({"validation": validation_dataset, "test": test_dataset})


def load_pubmed(n_samples=10000):
    # Load the dataset in streaming mode
    streaming_dataset = load_dataset("MedRAG/pubmed", streaming=True)

    # Extract test and validation splits
    data = list(streaming_dataset["train"].take(n_samples*4))
    train = data[:2*n_samples]
    validation = data[2*n_samples:3*n_samples]
    test = data[3*n_samples:]
    # Convert them into regular datasets
    train = Dataset.from_list(train)
    validation = Dataset.from_list(validation)
    test = Dataset.from_list(test)
    dataset = DatasetDict({"train": train, 'validation': validation, 'test': test})
    dataset = dataset.rename_column('content', 'text')
    return dataset


def load_lm_dataset(dataset_name, language="en", split=None):
    """
    Loads a popular pretraining or perplexity evaluation dataset by name and language.

    Args:
        dataset_name (str): The name of the dataset to load. Options include:
            - 'wikitext' (wikitext-2, smaller WikiText dataset)
            - 'wikitext-103' (larger WikiText dataset)
            - 'pg19' (Project Gutenberg dataset for long-context modeling)
            - 'c4' (Common Crawl-based English corpus)
            - 'wiki40b' (Wikipedia dataset in multiple languages)
            - 'mc4' (Multilingual C4 dataset in various languages)
        language (str): Language code for datasets that support multilingual options (e.g., 'en' for English).
                        Defaults to 'en'.

    Returns:
        Dataset: Loaded Hugging Face dataset.
    """
    if dataset_name.lower() == 'wikitext':
        return load_dataset("Salesforce/wikitext", "wikitext-2-raw-v1", split=split)
    elif dataset_name.lower() == 'fineweb-edu':
        return load_dataset("HuggingFaceFW/fineweb-edu", name="sample-10BT")
    elif dataset_name.lower() == 'wikitext-103':
        return load_dataset("Salesforce/wikitext", "wikitext-103-raw-v1", split=split)
    elif dataset_name.lower() == 'cord19':
        return load_dataset("allenai/cord19", "fulltext", trust_remote_code=True)
    elif dataset_name.lower() == 'pubmed':
        return load_pubmed()
    elif dataset_name.lower() == 'wikilingua':
        dataset = load_dataset("GEM/wiki_lingua", trust_remote_code=True)
        dataset = dataset.filter(lambda ex: (ex['source_language'] == "en") & (ex['target_language'] == "en"))
        dataset = dataset.rename_column("source", "text")
        dataset = dataset.rename_column("target", "summary")
        return dataset
    elif dataset_name.lower() == 'xsum':
        dataset = load_dataset("EdinburghNLP/xsum")
        dataset = dataset.rename_column("document", "text")
        return dataset
    elif dataset_name.lower() == 'cnn':
        dataset = load_dataset("abisee/cnn_dailymail", "3.0.0")
        dataset = dataset.rename_column("article", "text")
        dataset = dataset.rename_column("highlights", "summary")
        dataset = dataset.map(lambda example: {"text": example["text"].replace("(CNN)", "")})
        return dataset
    elif dataset_name.lower() == 'pg19':
        return load_pg19_val_and_test()
    elif dataset_name.lower() == 'wiki40b':
        dataset = load_dataset("google/wiki40b", language, split=split)
        if language in LANGUAGES_TO_DECODE_FROM_BYTES:
            dataset = dataset.map(lambda x: {
                "text": bytes(x["text"][2:-1], "utf-8").decode("unicode_escape").encode("latin1").decode("utf-8").replace("_NEWLINE_", "\n")
            })
        return dataset
    else:
        raise ValueError(
            "Dataset not recognized. Available options: 'wikitext-2', 'wikitext-103', 'pg19', 'c4', 'wiki40b', 'mc4'.")


def extract_new_words_from_dataset(
        dataset: Dataset, tokenizer, text_column: str = "text", max_samples: int = None, filter_func=(lambda word, token_count: True)):
    """
    Loads a Hugging Face dataset and extracts all unique words from the specified text column.

    Args:
        dataset (Dataset): Name of the dataset to load.
        split (str): Dataset split to use, typically 'train' for training data. Defaults to 'train'.
        text_column (str): The column in the dataset containing text. Defaults to 'text'.
        max_samples (int): Number of samples from the dataset to go over.

    Returns:
        set: A set of unique words in the dataset.
    """
    if max_samples:
        dataset = dataset.select(range(max_samples))

    # Regular expression to split text into words (adjust as needed for specific languages)
    # word_pattern = re.compile(r"\b\w+\b")
    word_pattern = re.compile(r"\b\w+(?:[-']\w+)*\b")

    # Iterate over each entry in the dataset and extract unique words
    all_words = list()
    new_words = list()
    for record in tqdm(dataset, total=len(dataset), miniters=10, desc="Extracting all words from dataset...", unit="examples"):
        text = record.get(text_column, "")
        words = word_pattern.findall(text)
        all_words += words

    # all_words = list(dict.fromkeys(all_words))
    word_frequencies = Counter(all_words)
    all_words = list(word_frequencies.keys())
    token_counts = [len(x) for x in tokenizer(all_words, add_special_tokens=False)["input_ids"]]
    w_whitespace_token_counts = [len(x) for x in tokenizer([f" {w}" for w in all_words], add_special_tokens=False)["input_ids"]]

    new_words = [word for word, count, w_whitespace_count in zip(all_words, token_counts, w_whitespace_token_counts) if ((count > 1) and (w_whitespace_count > 1) and filter_func(word, count))]
    new_words_freq = {word: word_frequencies[word] for word in new_words}
    # for word, token_count in tqdm(all_words, total=len(all_words), miniters=10, desc="Finding new words...", unit="words"):
    #     if (not tokenizer.vocab.get(word, False)) and :
    #         new_words.append(word)

    # remove duplicates and return
    return new_words, new_words_freq


def get_group_texts_func(block_size=1024):
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}

        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, and if the total_length < block_size  we exclude this batch and return an empty dict.
        # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
        total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k: [t[i: i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result
    return group_texts


def get_tokenize_func(tokenizer, text_col_name):
    def _tokenize(examples):
        output = tokenizer(
            examples[text_col_name],
            return_token_type_ids=False,
            add_special_tokens=False,
        )
        return output
    return _tokenize


def tokenize_and_prepare_dataset(
        dataset, tokenizer, accelerator=None,
        text_col_name: str = "text",
        max_length: int = 256,
        eval_max_samples: int = None,
):

    if tokenizer.bos_token is not None and max_length:
        # leave room for <BOS> token to be added:
        max_tokenized_len = max_length - 1
    else:
        max_tokenized_len = max_length

    tokenize_function = get_tokenize_func(tokenizer, text_col_name)

    column_names = dataset.column_names

    tokenized_dataset = dataset.map(
        tokenize_function,
        batched=True,
        remove_columns=column_names,
        load_from_cache_file=False,
        desc="Running tokenizer on dataset",
    )
    group_texts = get_group_texts_func(block_size=max_tokenized_len)
    lm_dataset = tokenized_dataset.map(
        group_texts,
        batched=True,
    )

    if eval_max_samples:
        lm_dataset = lm_dataset.select(range(eval_max_samples))

    return lm_dataset