Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,975 Bytes
0108542 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import re
from datasets import load_dataset, Dataset, DatasetDict
from itertools import chain
from tqdm import tqdm
from collections import Counter
from accelerate import Accelerator
LANGUAGES_TO_DECODE_FROM_BYTES = ["he", "fr", "uk"]
STREAMING_DATASETS = ["fineweb-edu"]
def load_pg19_val_and_test():
# Load the dataset in streaming mode
streaming_dataset = load_dataset("deepmind/pg19", split=None, streaming=True)
# Extract test and validation splits
test_split = list(streaming_dataset["test"])
validation_split = list(streaming_dataset["validation"])
# Convert them into regular datasets
test_dataset = Dataset.from_list(test_split)
validation_dataset = Dataset.from_list(validation_split)
# validation_dataset = load_dataset("deepmind/pg19", split="validation")
# test_dataset = load_dataset("deepmind/pg19", split="test")
return DatasetDict({"validation": validation_dataset, "test": test_dataset})
def load_pubmed(n_samples=10000):
# Load the dataset in streaming mode
streaming_dataset = load_dataset("MedRAG/pubmed", streaming=True)
# Extract test and validation splits
data = list(streaming_dataset["train"].take(n_samples*4))
train = data[:2*n_samples]
validation = data[2*n_samples:3*n_samples]
test = data[3*n_samples:]
# Convert them into regular datasets
train = Dataset.from_list(train)
validation = Dataset.from_list(validation)
test = Dataset.from_list(test)
dataset = DatasetDict({"train": train, 'validation': validation, 'test': test})
dataset = dataset.rename_column('content', 'text')
return dataset
def load_lm_dataset(dataset_name, language="en", split=None):
"""
Loads a popular pretraining or perplexity evaluation dataset by name and language.
Args:
dataset_name (str): The name of the dataset to load. Options include:
- 'wikitext' (wikitext-2, smaller WikiText dataset)
- 'wikitext-103' (larger WikiText dataset)
- 'pg19' (Project Gutenberg dataset for long-context modeling)
- 'c4' (Common Crawl-based English corpus)
- 'wiki40b' (Wikipedia dataset in multiple languages)
- 'mc4' (Multilingual C4 dataset in various languages)
language (str): Language code for datasets that support multilingual options (e.g., 'en' for English).
Defaults to 'en'.
Returns:
Dataset: Loaded Hugging Face dataset.
"""
if dataset_name.lower() == 'wikitext':
return load_dataset("Salesforce/wikitext", "wikitext-2-raw-v1", split=split)
elif dataset_name.lower() == 'fineweb-edu':
return load_dataset("HuggingFaceFW/fineweb-edu", name="sample-10BT")
elif dataset_name.lower() == 'wikitext-103':
return load_dataset("Salesforce/wikitext", "wikitext-103-raw-v1", split=split)
elif dataset_name.lower() == 'cord19':
return load_dataset("allenai/cord19", "fulltext", trust_remote_code=True)
elif dataset_name.lower() == 'pubmed':
return load_pubmed()
elif dataset_name.lower() == 'wikilingua':
dataset = load_dataset("GEM/wiki_lingua", trust_remote_code=True)
dataset = dataset.filter(lambda ex: (ex['source_language'] == "en") & (ex['target_language'] == "en"))
dataset = dataset.rename_column("source", "text")
dataset = dataset.rename_column("target", "summary")
return dataset
elif dataset_name.lower() == 'xsum':
dataset = load_dataset("EdinburghNLP/xsum")
dataset = dataset.rename_column("document", "text")
return dataset
elif dataset_name.lower() == 'cnn':
dataset = load_dataset("abisee/cnn_dailymail", "3.0.0")
dataset = dataset.rename_column("article", "text")
dataset = dataset.rename_column("highlights", "summary")
dataset = dataset.map(lambda example: {"text": example["text"].replace("(CNN)", "")})
return dataset
elif dataset_name.lower() == 'pg19':
return load_pg19_val_and_test()
elif dataset_name.lower() == 'wiki40b':
dataset = load_dataset("google/wiki40b", language, split=split)
if language in LANGUAGES_TO_DECODE_FROM_BYTES:
dataset = dataset.map(lambda x: {
"text": bytes(x["text"][2:-1], "utf-8").decode("unicode_escape").encode("latin1").decode("utf-8").replace("_NEWLINE_", "\n")
})
return dataset
else:
raise ValueError(
"Dataset not recognized. Available options: 'wikitext-2', 'wikitext-103', 'pg19', 'c4', 'wiki40b', 'mc4'.")
def extract_new_words_from_dataset(
dataset: Dataset, tokenizer, text_column: str = "text", max_samples: int = None, filter_func=(lambda word, token_count: True)):
"""
Loads a Hugging Face dataset and extracts all unique words from the specified text column.
Args:
dataset (Dataset): Name of the dataset to load.
split (str): Dataset split to use, typically 'train' for training data. Defaults to 'train'.
text_column (str): The column in the dataset containing text. Defaults to 'text'.
max_samples (int): Number of samples from the dataset to go over.
Returns:
set: A set of unique words in the dataset.
"""
if max_samples:
dataset = dataset.select(range(max_samples))
# Regular expression to split text into words (adjust as needed for specific languages)
# word_pattern = re.compile(r"\b\w+\b")
word_pattern = re.compile(r"\b\w+(?:[-']\w+)*\b")
# Iterate over each entry in the dataset and extract unique words
all_words = list()
new_words = list()
for record in tqdm(dataset, total=len(dataset), miniters=10, desc="Extracting all words from dataset...", unit="examples"):
text = record.get(text_column, "")
words = word_pattern.findall(text)
all_words += words
# all_words = list(dict.fromkeys(all_words))
word_frequencies = Counter(all_words)
all_words = list(word_frequencies.keys())
token_counts = [len(x) for x in tokenizer(all_words, add_special_tokens=False)["input_ids"]]
w_whitespace_token_counts = [len(x) for x in tokenizer([f" {w}" for w in all_words], add_special_tokens=False)["input_ids"]]
new_words = [word for word, count, w_whitespace_count in zip(all_words, token_counts, w_whitespace_token_counts) if ((count > 1) and (w_whitespace_count > 1) and filter_func(word, count))]
new_words_freq = {word: word_frequencies[word] for word in new_words}
# for word, token_count in tqdm(all_words, total=len(all_words), miniters=10, desc="Finding new words...", unit="words"):
# if (not tokenizer.vocab.get(word, False)) and :
# new_words.append(word)
# remove duplicates and return
return new_words, new_words_freq
def get_group_texts_func(block_size=1024):
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
# We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i: i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
return group_texts
def get_tokenize_func(tokenizer, text_col_name):
def _tokenize(examples):
output = tokenizer(
examples[text_col_name],
return_token_type_ids=False,
add_special_tokens=False,
)
return output
return _tokenize
def tokenize_and_prepare_dataset(
dataset, tokenizer, accelerator=None,
text_col_name: str = "text",
max_length: int = 256,
eval_max_samples: int = None,
):
if tokenizer.bos_token is not None and max_length:
# leave room for <BOS> token to be added:
max_tokenized_len = max_length - 1
else:
max_tokenized_len = max_length
tokenize_function = get_tokenize_func(tokenizer, text_col_name)
column_names = dataset.column_names
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
group_texts = get_group_texts_func(block_size=max_tokenized_len)
lm_dataset = tokenized_dataset.map(
group_texts,
batched=True,
)
if eval_max_samples:
lm_dataset = lm_dataset.select(range(eval_max_samples))
return lm_dataset
|