import gradio as gr import cv2 import numpy as np import tempfile import os from scripts.inference import GazePredictor from utils.ear_utils import BlinkDetector def smooth_values(history, current_value, window_size=5): if current_value is not None: history.append(current_value) if len(history) > window_size: history.pop(0) return np.mean(history, axis=0) if isinstance(current_value, np.ndarray) and history else current_value if current_value is not None else 0 MODEL_PATH = os.path.join("models", "gaze_estimation_model.pth") def analyze_video(input_video): cap = cv2.VideoCapture(input_video) gaze_predictor = GazePredictor(MODEL_PATH) blink_detector = BlinkDetector() fourcc = cv2.VideoWriter_fourcc(*'mp4v') temp_fd, temp_path = tempfile.mkstemp(suffix='.mp4') os.close(temp_fd) out = None GAZE_STABILITY_THRESHOLD = 0.5 TIME_THRESHOLD = 15 BLINK_RATE_THRESHOLD = 1 EYE_CLOSURE_THRESHOLD = 10 HEAD_STABILITY_THRESHOLD = 0.05 gaze_history = [] head_history = [] ear_history = [] stable_gaze_time = 0 stable_head_time = 0 eye_closed_time = 0 blink_count = 0 start_time = 0 is_unconscious = False frame_count = 0 fps = cap.get(cv2.CAP_PROP_FPS) or 20 while True: ret, frame = cap.read() if not ret: break frame_count += 1 if start_time == 0: start_time = frame_count / fps head_pose_gaze, gaze_h, gaze_v = gaze_predictor.predict_gaze(frame) current_gaze = np.array([gaze_h, gaze_v]) smoothed_gaze = smooth_values(gaze_history, current_gaze) ear, left_eye, right_eye, head_pose, left_iris, right_iris = blink_detector.detect_blinks(frame) if ear is None: cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) smoothed_head = smooth_values(head_history, None) smoothed_ear = smooth_values(ear_history, None) else: smoothed_head = smooth_values(head_history, head_pose) smoothed_ear = smooth_values(ear_history, ear) if smoothed_ear >= blink_detector.EAR_THRESHOLD: cv2.drawMarker(frame, left_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2) cv2.drawMarker(frame, right_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2) cv2.putText(frame, f"Gaze H: {smoothed_gaze[0]:.2f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.putText(frame, f"Gaze V: {smoothed_gaze[1]:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.putText(frame, f"Head Pose: {smoothed_head:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.putText(frame, f"EAR: {smoothed_ear:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) if len(gaze_history) > 1: gaze_diff = np.sqrt(np.sum((smoothed_gaze - gaze_history[-2])**2)) if gaze_diff < GAZE_STABILITY_THRESHOLD: if stable_gaze_time == 0: stable_gaze_time = frame_count / fps else: stable_gaze_time = 0 if len(head_history) > 1 and head_pose is not None: head_diff = abs(smoothed_head - head_history[-2]) if head_diff < HEAD_STABILITY_THRESHOLD: if stable_head_time == 0: stable_head_time = frame_count / fps else: stable_head_time = 0 if ear is not None and smoothed_ear < blink_detector.EAR_THRESHOLD: if eye_closed_time == 0: eye_closed_time = frame_count / fps elif (frame_count / fps) - eye_closed_time > EYE_CLOSURE_THRESHOLD: cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) else: if eye_closed_time > 0 and (frame_count / fps) - eye_closed_time < 0.5: blink_count += 1 eye_closed_time = 0 elapsed_minutes = ((frame_count / fps) - start_time) / 60 if start_time > 0 else 0 blink_rate = blink_count / elapsed_minutes if elapsed_minutes > 0 else 0 cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) unconscious_conditions = [ stable_gaze_time > 0 and (frame_count / fps) - stable_gaze_time > TIME_THRESHOLD, blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes > 1, eye_closed_time > 0 and (frame_count / fps) - eye_closed_time > EYE_CLOSURE_THRESHOLD, stable_head_time > 0 and (frame_count / fps) - stable_head_time > TIME_THRESHOLD ] if sum(unconscious_conditions) >= 2: cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) is_unconscious = True else: is_unconscious = False if out is None: h, w = frame.shape[:2] out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h)) out.write(frame) cap.release() if out: out.release() return temp_path iface = gr.Interface( fn=analyze_video, inputs=gr.Video(), outputs=gr.Video(), title="Gaze Tracker", description="Upload a video to analyze gaze and drowsiness." ) if __name__ == "__main__": iface.launch()