new
Browse files
app.py
CHANGED
@@ -64,9 +64,6 @@ is_unconscious = False
|
|
64 |
frame_count_webcam = 0
|
65 |
stop_gaze_processing = False
|
66 |
|
67 |
-
# --- Global State Variables for Distraction Webcam ---
|
68 |
-
stop_distraction_processing = False
|
69 |
-
|
70 |
# Constants
|
71 |
GAZE_STABILITY_THRESHOLD = 0.5
|
72 |
TIME_THRESHOLD = 15
|
@@ -202,6 +199,74 @@ def analyze_video(input_video):
|
|
202 |
out.release()
|
203 |
return temp_path
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
def terminate_gaze_stream():
|
206 |
global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
|
207 |
global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing
|
@@ -220,12 +285,6 @@ def terminate_gaze_stream():
|
|
220 |
frame_count_webcam = 0
|
221 |
return "Gaze Processing Terminated. State Reset."
|
222 |
|
223 |
-
def terminate_distraction_stream():
|
224 |
-
global stop_distraction_processing
|
225 |
-
print("Distraction Termination signal received. Stopping processing.")
|
226 |
-
stop_distraction_processing = True
|
227 |
-
return "Distraction Processing Terminated."
|
228 |
-
|
229 |
def process_gaze_frame(frame):
|
230 |
global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
|
231 |
global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing
|
@@ -338,58 +397,6 @@ def process_gaze_frame(frame):
|
|
338 |
cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
|
339 |
return error_frame
|
340 |
|
341 |
-
def process_distraction_frame(frame):
|
342 |
-
global stop_distraction_processing
|
343 |
-
|
344 |
-
if stop_distraction_processing:
|
345 |
-
return np.zeros((480, 640, 3), dtype=np.uint8)
|
346 |
-
|
347 |
-
if frame is None:
|
348 |
-
return np.zeros((480, 640, 3), dtype=np.uint8)
|
349 |
-
|
350 |
-
try:
|
351 |
-
frame_to_process = frame
|
352 |
-
results = distraction_model(frame_to_process, conf=DISTRACTION_CONF_THRESHOLD, verbose=False)
|
353 |
-
|
354 |
-
display_text = "safe driving"
|
355 |
-
alarm_action = None
|
356 |
-
|
357 |
-
for result in results:
|
358 |
-
if result.boxes is not None and len(result.boxes) > 0:
|
359 |
-
boxes = result.boxes.xyxy.cpu().numpy()
|
360 |
-
scores = result.boxes.conf.cpu().numpy()
|
361 |
-
classes = result.boxes.cls.cpu().numpy()
|
362 |
-
|
363 |
-
if len(boxes) > 0:
|
364 |
-
max_score_idx = scores.argmax()
|
365 |
-
detected_action_idx = int(classes[max_score_idx])
|
366 |
-
if 0 <= detected_action_idx < len(distraction_class_names):
|
367 |
-
detected_action = distraction_class_names[detected_action_idx]
|
368 |
-
confidence = scores[max_score_idx]
|
369 |
-
display_text = f"{detected_action}: {confidence:.2f}"
|
370 |
-
if detected_action != 'safe driving':
|
371 |
-
alarm_action = detected_action
|
372 |
-
else:
|
373 |
-
print(f"Warning: Detected class index {detected_action_idx} out of bounds.")
|
374 |
-
display_text = "Unknown Detection"
|
375 |
-
|
376 |
-
if alarm_action:
|
377 |
-
print(f"ALARM: Unsafe behavior detected - {alarm_action}!")
|
378 |
-
cv2.putText(frame, f"ALARM: {alarm_action}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
379 |
-
|
380 |
-
text_color = (0, 255, 0) if alarm_action is None else (0, 255, 255)
|
381 |
-
cv2.putText(frame, display_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)
|
382 |
-
|
383 |
-
return frame
|
384 |
-
|
385 |
-
except Exception as e:
|
386 |
-
print(f"Error processing distraction frame: {e}")
|
387 |
-
error_frame = np.zeros((480, 640, 3), dtype=np.uint8)
|
388 |
-
if not error_frame.flags.writeable:
|
389 |
-
error_frame = error_frame.copy()
|
390 |
-
cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
|
391 |
-
return error_frame
|
392 |
-
|
393 |
def create_gaze_interface():
|
394 |
with gr.Blocks() as gaze_demo:
|
395 |
gr.Markdown("## Real-time Gaze & Drowsiness Tracking")
|
@@ -409,21 +416,13 @@ def create_gaze_interface():
|
|
409 |
return gaze_demo
|
410 |
|
411 |
def create_distraction_interface():
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
webcam_stream.stream(
|
420 |
-
fn=process_distraction_frame,
|
421 |
-
inputs=[webcam_stream],
|
422 |
-
outputs=[webcam_stream]
|
423 |
-
)
|
424 |
-
|
425 |
-
terminate_btn.click(fn=terminate_distraction_stream, inputs=None, outputs=None)
|
426 |
-
|
427 |
return distraction_demo
|
428 |
|
429 |
def create_video_interface():
|
@@ -438,7 +437,7 @@ def create_video_interface():
|
|
438 |
|
439 |
demo = gr.TabbedInterface(
|
440 |
[create_video_interface(), create_gaze_interface(), create_distraction_interface()],
|
441 |
-
["Video Upload", "Gaze & Drowsiness", "Distraction
|
442 |
title="Driver Monitoring System"
|
443 |
)
|
444 |
|
@@ -454,5 +453,4 @@ if __name__ == "__main__":
|
|
454 |
is_unconscious = False
|
455 |
frame_count_webcam = 0
|
456 |
stop_gaze_processing = False
|
457 |
-
stop_distraction_processing = False
|
458 |
demo.launch()
|
|
|
64 |
frame_count_webcam = 0
|
65 |
stop_gaze_processing = False
|
66 |
|
|
|
|
|
|
|
67 |
# Constants
|
68 |
GAZE_STABILITY_THRESHOLD = 0.5
|
69 |
TIME_THRESHOLD = 15
|
|
|
199 |
out.release()
|
200 |
return temp_path
|
201 |
|
202 |
+
def analyze_distraction_video(input_video):
|
203 |
+
cap = cv2.VideoCapture(input_video)
|
204 |
+
if not cap.isOpened():
|
205 |
+
print("Error: Could not open video file.")
|
206 |
+
return None
|
207 |
+
|
208 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
209 |
+
temp_fd, temp_path = tempfile.mkstemp(suffix='.mp4')
|
210 |
+
os.close(temp_fd)
|
211 |
+
out = None
|
212 |
+
|
213 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 30
|
214 |
+
|
215 |
+
while True:
|
216 |
+
ret, frame = cap.read()
|
217 |
+
if not ret:
|
218 |
+
break
|
219 |
+
|
220 |
+
try:
|
221 |
+
results = distraction_model(frame, conf=DISTRACTION_CONF_THRESHOLD, verbose=False)
|
222 |
+
|
223 |
+
display_text = "safe driving"
|
224 |
+
alarm_action = None
|
225 |
+
|
226 |
+
for result in results:
|
227 |
+
if result.boxes is not None and len(result.boxes) > 0:
|
228 |
+
boxes = result.boxes.xyxy.cpu().numpy()
|
229 |
+
scores = result.boxes.conf.cpu().numpy()
|
230 |
+
classes = result.boxes.cls.cpu().numpy()
|
231 |
+
|
232 |
+
if len(boxes) > 0:
|
233 |
+
max_score_idx = scores.argmax()
|
234 |
+
detected_action_idx = int(classes[max_score_idx])
|
235 |
+
if 0 <= detected_action_idx < len(distraction_class_names):
|
236 |
+
detected_action = distraction_class_names[detected_action_idx]
|
237 |
+
confidence = scores[max_score_idx]
|
238 |
+
display_text = f"{detected_action}: {confidence:.2f}"
|
239 |
+
if detected_action != 'safe driving':
|
240 |
+
alarm_action = detected_action
|
241 |
+
else:
|
242 |
+
print(f"Warning: Detected class index {detected_action_idx} out of bounds.")
|
243 |
+
display_text = "Unknown Detection"
|
244 |
+
|
245 |
+
if alarm_action:
|
246 |
+
print(f"ALARM: Unsafe behavior detected - {alarm_action}!")
|
247 |
+
cv2.putText(frame, f"ALARM: {alarm_action}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
248 |
+
|
249 |
+
text_color = (0, 255, 0) if alarm_action is None else (0, 255, 255)
|
250 |
+
cv2.putText(frame, display_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)
|
251 |
+
|
252 |
+
if out is None:
|
253 |
+
h, w = frame.shape[:2]
|
254 |
+
out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
|
255 |
+
out.write(frame)
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
print(f"Error processing distraction frame in video: {e}")
|
259 |
+
if out is None:
|
260 |
+
h, w = frame.shape[:2]
|
261 |
+
out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
|
262 |
+
cv2.putText(frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
|
263 |
+
out.write(frame)
|
264 |
+
|
265 |
+
cap.release()
|
266 |
+
if out:
|
267 |
+
out.release()
|
268 |
+
return temp_path
|
269 |
+
|
270 |
def terminate_gaze_stream():
|
271 |
global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
|
272 |
global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing
|
|
|
285 |
frame_count_webcam = 0
|
286 |
return "Gaze Processing Terminated. State Reset."
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
def process_gaze_frame(frame):
|
289 |
global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
|
290 |
global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing
|
|
|
397 |
cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
|
398 |
return error_frame
|
399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
def create_gaze_interface():
|
401 |
with gr.Blocks() as gaze_demo:
|
402 |
gr.Markdown("## Real-time Gaze & Drowsiness Tracking")
|
|
|
416 |
return gaze_demo
|
417 |
|
418 |
def create_distraction_interface():
|
419 |
+
distraction_demo = gr.Interface(
|
420 |
+
fn=analyze_distraction_video,
|
421 |
+
inputs=gr.Video(sources=["upload", "webcam"], label="Input Video (Upload or Record)"),
|
422 |
+
outputs=gr.Video(label="Processed Video"),
|
423 |
+
title="Distraction Detection Analysis",
|
424 |
+
description="Upload or record a video to analyze driver distraction."
|
425 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
return distraction_demo
|
427 |
|
428 |
def create_video_interface():
|
|
|
437 |
|
438 |
demo = gr.TabbedInterface(
|
439 |
[create_video_interface(), create_gaze_interface(), create_distraction_interface()],
|
440 |
+
["Gaze Video Upload", "Gaze & Drowsiness (Live)", "Distraction Video Upload"],
|
441 |
title="Driver Monitoring System"
|
442 |
)
|
443 |
|
|
|
453 |
is_unconscious = False
|
454 |
frame_count_webcam = 0
|
455 |
stop_gaze_processing = False
|
|
|
456 |
demo.launch()
|