driver / app.py
Guru-25's picture
new
d343b30 verified
raw
history blame
24.6 kB
import gradio as gr
import cv2
import numpy as np
import tempfile
import os
import time
import spaces
from scripts.inference import GazePredictor
from utils.ear_utils import BlinkDetector
from gradio_webrtc import WebRTC
from ultralytics import YOLO
import torch
import json
import requests
def smooth_values(history, current_value, window_size=5):
if current_value is not None:
if isinstance(current_value, np.ndarray):
history.append(current_value)
elif isinstance(current_value, (int, float)):
history.append(current_value)
if len(history) > window_size:
history.pop(0)
if not history:
return current_value
if all(isinstance(item, np.ndarray) for item in history):
first_shape = history[0].shape
if all(item.shape == first_shape for item in history):
return np.mean(history, axis=0)
else:
return history[-1] if history else None
elif all(isinstance(item, (int, float)) for item in history):
return np.mean(history)
else:
return history[-1] if history else None
# --- Configure Twilio TURN servers for WebRTC ---
def get_twilio_turn_credentials():
# Replace with your Twilio credentials or set as environment variables
twilio_account_sid = os.environ.get("TWILIO_ACCOUNT_SID", "")
twilio_auth_token = os.environ.get("TWILIO_AUTH_TOKEN", "")
if not twilio_account_sid or not twilio_auth_token:
print("Warning: Twilio credentials not found. Using default RTCConfiguration.")
return None
try:
response = requests.post(
f"https://api.twilio.com/2010-04-01/Accounts/{twilio_account_sid}/Tokens.json",
auth=(twilio_account_sid, twilio_auth_token),
)
data = response.json()
return data["ice_servers"]
except Exception as e:
print(f"Error fetching Twilio TURN credentials: {e}")
return None
# Configure WebRTC
ice_servers = get_twilio_turn_credentials()
if ice_servers:
rtc_configuration = {"iceServers": ice_servers}
else:
rtc_configuration = {"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
# --- Model Paths ---
GAZE_MODEL_PATH = os.path.join("models", "gaze_estimation_model.pth")
DISTRACTION_MODEL_PATH = "best.pt"
# --- Global Initializations ---
blink_detector = BlinkDetector()
# Distraction Class Names
distraction_class_names = [
'safe driving', 'drinking', 'eating', 'hair and makeup',
'operating radio', 'talking on phone', 'talking to passenger'
]
# --- Global State Variables for Gaze Webcam ---
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count_webcam = 0
stop_gaze_processing = False
# --- Global State Variables for Distraction Webcam ---
stop_distraction_processing = False
# Constants
GAZE_STABILITY_THRESHOLD = 0.5
TIME_THRESHOLD = 15
BLINK_RATE_THRESHOLD = 1
EYE_CLOSURE_THRESHOLD = 10
HEAD_STABILITY_THRESHOLD = 0.05
DISTRACTION_CONF_THRESHOLD = 0.1
@spaces.GPU(duration=30) # Set duration to 30 seconds for real-time processing
def analyze_video(input_video):
cap = cv2.VideoCapture(input_video)
local_gaze_predictor = GazePredictor(GAZE_MODEL_PATH)
local_blink_detector = BlinkDetector()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_fd, temp_path = tempfile.mkstemp(suffix='.mp4')
os.close(temp_fd)
out = None
video_gaze_history = []
video_head_history = []
video_ear_history = []
video_stable_gaze_time = 0
video_stable_head_time = 0
video_eye_closed_time = 0
video_blink_count = 0
video_start_time = 0
video_is_unconscious = False
video_frame_count = 0
fps = cap.get(cv2.CAP_PROP_FPS) or 30
while True:
ret, frame = cap.read()
if not ret:
break
video_frame_count += 1
current_time_video = video_frame_count / fps
if video_start_time == 0:
video_start_time = current_time_video
head_pose_gaze, gaze_h, gaze_v = local_gaze_predictor.predict_gaze(frame)
current_gaze = np.array([gaze_h, gaze_v]) if gaze_h is not None and gaze_v is not None else None
smoothed_gaze = smooth_values(video_gaze_history, current_gaze)
ear, left_eye, right_eye, head_pose, left_iris, right_iris = local_blink_detector.detect_blinks(frame)
if ear is None:
cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
smoothed_head = smooth_values(video_head_history, None)
smoothed_ear = smooth_values(video_ear_history, None)
else:
smoothed_head = smooth_values(video_head_history, head_pose)
smoothed_ear = smooth_values(video_ear_history, ear)
if smoothed_ear >= local_blink_detector.EAR_THRESHOLD and left_iris and right_iris:
if all(isinstance(coord, (int, float)) and coord >= 0 for coord in left_iris) and \
all(isinstance(coord, (int, float)) and coord >= 0 for coord in right_iris):
try:
cv2.drawMarker(frame, tuple(map(int, left_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.drawMarker(frame, tuple(map(int, right_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
except OverflowError:
print(f"Warning: OverflowError drawing iris markers at {left_iris}, {right_iris}")
gaze_text_h = f"Gaze H: {smoothed_gaze[0]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 0 else "Gaze H: N/A"
gaze_text_v = f"Gaze V: {smoothed_gaze[1]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 1 else "Gaze V: N/A"
head_text = f"Head Pose: {smoothed_head:.2f}" if smoothed_head is not None else "Head Pose: N/A"
ear_text = f"EAR: {smoothed_ear:.2f}" if smoothed_ear is not None else "EAR: N/A"
cv2.putText(frame, gaze_text_h, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, gaze_text_v, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, head_text, (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, ear_text, (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
if len(video_gaze_history) > 1 and smoothed_gaze is not None and video_gaze_history[-2] is not None:
try:
gaze_diff = np.sqrt(np.sum((smoothed_gaze - video_gaze_history[-2])**2))
if gaze_diff < GAZE_STABILITY_THRESHOLD:
if video_stable_gaze_time == 0:
video_stable_gaze_time = current_time_video
else:
video_stable_gaze_time = 0
except TypeError:
video_stable_gaze_time = 0
else:
video_stable_gaze_time = 0
if len(video_head_history) > 1 and smoothed_head is not None and video_head_history[-2] is not None:
head_diff = abs(smoothed_head - video_head_history[-2])
if head_diff < HEAD_STABILITY_THRESHOLD:
if video_stable_head_time == 0:
video_stable_head_time = current_time_video
else:
video_stable_head_time = 0
else:
video_stable_head_time = 0
if ear is not None and smoothed_ear is not None and smoothed_ear < local_blink_detector.EAR_THRESHOLD:
if video_eye_closed_time == 0:
video_eye_closed_time = current_time_video
elif current_time_video - video_eye_closed_time > EYE_CLOSURE_THRESHOLD:
cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
elif ear is not None:
if video_eye_closed_time > 0 and current_time_video - video_eye_closed_time < 0.5:
video_blink_count += 1
video_eye_closed_time = 0
else:
video_eye_closed_time = 0
elapsed_seconds_video = current_time_video - video_start_time if video_start_time > 0 else 0
elapsed_minutes_video = elapsed_seconds_video / 60
blink_rate = video_blink_count / elapsed_minutes_video if elapsed_minutes_video > 0 else 0
cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
unconscious_conditions = [
video_stable_gaze_time > 0 and current_time_video - video_stable_gaze_time > TIME_THRESHOLD,
blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes_video > 1,
video_eye_closed_time > 0 and current_time_video - video_eye_closed_time > EYE_CLOSURE_THRESHOLD,
video_stable_head_time > 0 and current_time_video - video_stable_head_time > TIME_THRESHOLD
]
if sum(unconscious_conditions) >= 2:
cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
video_is_unconscious = True
else:
video_is_unconscious = False
if out is None:
h, w = frame.shape[:2]
out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
out.write(frame)
cap.release()
if out:
out.release()
return temp_path
@spaces.GPU(duration=30) # Set duration to 30 seconds for real-time processing
def analyze_distraction_video(input_video):
cap = cv2.VideoCapture(input_video)
if not cap.isOpened():
print("Error: Could not open video file.")
return None
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_fd, temp_path = tempfile.mkstemp(suffix='.mp4')
os.close(temp_fd)
out = None
fps = cap.get(cv2.CAP_PROP_FPS) or 30
local_distraction_model = YOLO(DISTRACTION_MODEL_PATH)
local_distraction_model.to('cpu')
while True:
ret, frame = cap.read()
if not ret:
break
try:
results = local_distraction_model(frame, conf=DISTRACTION_CONF_THRESHOLD, verbose=False)
display_text = "safe driving"
alarm_action = None
for result in results:
if result.boxes is not None and len(result.boxes) > 0:
boxes = result.boxes.xyxy.cpu().numpy()
scores = result.boxes.conf.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
if len(boxes) > 0:
max_score_idx = scores.argmax()
detected_action_idx = int(classes[max_score_idx])
if 0 <= detected_action_idx < len(distraction_class_names):
detected_action = distraction_class_names[detected_action_idx]
confidence = scores[max_score_idx]
display_text = f"{detected_action}: {confidence:.2f}"
if detected_action != 'safe driving':
alarm_action = detected_action
else:
print(f"Warning: Detected class index {detected_action_idx} out of bounds.")
display_text = "Unknown Detection"
if alarm_action:
print(f"ALARM: Unsafe behavior detected - {alarm_action}!")
cv2.putText(frame, f"ALARM: {alarm_action}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
text_color = (0, 255, 0) if alarm_action is None else (0, 255, 255)
cv2.putText(frame, display_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)
if out is None:
h, w = frame.shape[:2]
out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
out.write(frame)
except Exception as e:
print(f"Error processing distraction frame in video: {e}")
if out is None:
h, w = frame.shape[:2]
out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
cv2.putText(frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
out.write(frame)
cap.release()
if out:
out.release()
return temp_path
@spaces.GPU(duration=30) # Set duration to 30 seconds for real-time processing
def process_distraction_frame(frame):
global stop_distraction_processing
if stop_distraction_processing:
return np.zeros((480, 640, 3), dtype=np.uint8)
if frame is None:
return np.zeros((480, 640, 3), dtype=np.uint8)
local_distraction_model = YOLO(DISTRACTION_MODEL_PATH)
local_distraction_model.to('cpu')
try:
# Run distraction detection model
results = local_distraction_model(frame, conf=DISTRACTION_CONF_THRESHOLD, verbose=False)
display_text = "safe driving"
alarm_action = None
for result in results:
if result.boxes is not None and len(result.boxes) > 0:
boxes = result.boxes.xyxy.cpu().numpy()
scores = result.boxes.conf.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
if len(boxes) > 0:
# Draw bounding boxes
for i, box in enumerate(boxes):
x1, y1, x2, y2 = map(int, box)
cls_id = int(classes[i])
confidence = scores[i]
if 0 <= cls_id < len(distraction_class_names):
action = distraction_class_names[cls_id]
color = (0, 255, 0) if action == "safe driving" else (0, 0, 255)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, f"{action} {confidence:.2f}", (x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Select highest confidence detection for status
if i == scores.argmax():
detected_action = action
confidence_score = confidence
display_text = f"{detected_action}: {confidence_score:.2f}"
if detected_action != 'safe driving':
alarm_action = detected_action
else:
print(f"Warning: Detected class index {cls_id} out of bounds.")
display_text = "Unknown Detection"
if alarm_action:
cv2.putText(frame, f"ALERT: {alarm_action}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# Always show current detection status
text_color = (0, 255, 0) if alarm_action is None else (0, 255, 255)
cv2.putText(frame, display_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)
# Convert BGR to RGB for Gradio display
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb
except Exception as e:
print(f"Error processing frame for distraction detection: {e}")
error_frame = np.zeros((480, 640, 3), dtype=np.uint8)
if not error_frame.flags.writeable:
error_frame = error_frame.copy()
cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
return error_frame
def terminate_gaze_stream():
global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing
print("Gaze Termination signal received. Stopping processing and resetting state.")
stop_gaze_processing = True
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count_webcam = 0
return "Gaze Processing Terminated. State Reset."
def terminate_distraction_stream():
global stop_distraction_processing
print("Distraction Termination signal received. Stopping processing.")
stop_distraction_processing = True
return "Distraction Processing Terminated."
@spaces.GPU(duration=30) # Set duration to 30 seconds for real-time processing
def process_gaze_frame(frame):
global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing
if stop_gaze_processing:
return np.zeros((480, 640, 3), dtype=np.uint8)
if frame is None:
return np.zeros((480, 640, 3), dtype=np.uint8)
frame_count_webcam += 1
current_time = time.time()
if start_time == 0:
start_time = current_time
local_gaze_predictor = GazePredictor(GAZE_MODEL_PATH)
try:
head_pose_gaze, gaze_h, gaze_v = local_gaze_predictor.predict_gaze(frame)
current_gaze = np.array([gaze_h, gaze_v]) if gaze_h is not None and gaze_v is not None else None
smoothed_gaze = smooth_values(gaze_history, current_gaze)
ear, left_eye, right_eye, head_pose, left_iris, right_iris = blink_detector.detect_blinks(frame)
if ear is None:
cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
smoothed_head = smooth_values(head_history, None)
smoothed_ear = smooth_values(ear_history, None)
else:
smoothed_head = smooth_values(head_history, head_pose)
smoothed_ear = smooth_values(ear_history, ear)
if smoothed_ear >= blink_detector.EAR_THRESHOLD and left_iris and right_iris:
if all(isinstance(coord, (int, float)) and coord >= 0 for coord in left_iris) and \
all(isinstance(coord, (int, float)) and coord >= 0 for coord in right_iris):
try:
cv2.drawMarker(frame, tuple(map(int, left_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.drawMarker(frame, tuple(map(int, right_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
except OverflowError:
print(f"Warning: OverflowError drawing iris markers at {left_iris}, {right_iris}")
gaze_text_h = f"Gaze H: {smoothed_gaze[0]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 0 else "Gaze H: N/A"
gaze_text_v = f"Gaze V: {smoothed_gaze[1]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 1 else "Gaze V: N/A"
head_text = f"Head Pose: {smoothed_head:.2f}" if smoothed_head is not None else "Head Pose: N/A"
ear_text = f"EAR: {smoothed_ear:.2f}" if smoothed_ear is not None else "EAR: N/A"
cv2.putText(frame, gaze_text_h, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, gaze_text_v, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, head_text, (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, ear_text, (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
if len(gaze_history) > 1 and smoothed_gaze is not None and gaze_history[-2] is not None:
try:
gaze_diff = np.sqrt(np.sum((smoothed_gaze - gaze_history[-2])**2))
if gaze_diff < GAZE_STABILITY_THRESHOLD:
if stable_gaze_time == 0:
stable_gaze_time = current_time
else:
stable_gaze_time = 0
except TypeError:
stable_gaze_time = 0
else:
stable_gaze_time = 0
if len(head_history) > 1 and smoothed_head is not None and head_history[-2] is not None:
head_diff = abs(smoothed_head - head_history[-2])
if head_diff < HEAD_STABILITY_THRESHOLD:
if stable_head_time == 0:
stable_head_time = current_time
else:
stable_head_time = 0
else:
stable_head_time = 0
if ear is not None and smoothed_ear is not None and smoothed_ear < blink_detector.EAR_THRESHOLD:
if eye_closed_time == 0:
eye_closed_time = current_time
elif current_time - eye_closed_time > EYE_CLOSURE_THRESHOLD:
cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
elif ear is not None:
if eye_closed_time > 0 and current_time - eye_closed_time < 0.5:
blink_count += 1
eye_closed_time = 0
else:
eye_closed_time = 0
elapsed_seconds = current_time - start_time if start_time > 0 else 0
elapsed_minutes = elapsed_seconds / 60
blink_rate = blink_count / elapsed_minutes if elapsed_minutes > 0 else 0
cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
unconscious_conditions = [
stable_gaze_time > 0 and current_time - stable_gaze_time > TIME_THRESHOLD,
blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes > 1,
eye_closed_time > 0 and current_time - eye_closed_time > EYE_CLOSURE_THRESHOLD,
stable_head_time > 0 and current_time - stable_head_time > TIME_THRESHOLD
]
if sum(unconscious_conditions) >= 2:
cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
is_unconscious = True
else:
is_unconscious = False
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb
except Exception as e:
print(f"Error processing frame: {e}")
error_frame = np.zeros((480, 640, 3), dtype=np.uint8)
if not error_frame.flags.writeable:
error_frame = error_frame.copy()
cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
return error_frame
def create_gaze_interface():
with gr.Blocks() as gaze_demo:
gr.Markdown("## Real-time Gaze & Drowsiness Tracking")
with gr.Row():
webcam_stream = WebRTC(label="Webcam Stream", rtc_configuration=rtc_configuration)
with gr.Row():
terminate_btn = gr.Button("Terminate Process")
webcam_stream.stream(
fn=process_gaze_frame,
inputs=[webcam_stream],
outputs=[webcam_stream]
)
terminate_btn.click(fn=terminate_gaze_stream, inputs=None, outputs=None)
return gaze_demo
def create_distraction_interface():
with gr.Blocks() as distraction_demo:
gr.Markdown("## Real-time Distraction Detection")
with gr.Row():
webcam_stream = WebRTC(label="Webcam Stream", rtc_configuration=rtc_configuration)
with gr.Row():
terminate_btn = gr.Button("Terminate Process")
webcam_stream.stream(
fn=process_distraction_frame,
inputs=[webcam_stream],
outputs=[webcam_stream]
)
terminate_btn.click(fn=terminate_distraction_stream, inputs=None, outputs=None)
return distraction_demo
def create_video_interface():
video_demo = gr.Interface(
fn=analyze_video,
inputs=gr.Video(),
outputs=gr.Video(),
title="Video Analysis",
description="Upload a video to analyze gaze and drowsiness."
)
return video_demo
demo = gr.TabbedInterface(
[create_video_interface(), create_gaze_interface(), create_distraction_interface()],
["Gaze Video Upload", "Gaze & Drowsiness (Live)", "Distraction Detection (Live)"],
title="Driver Monitoring System"
)
if __name__ == "__main__":
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count_webcam = 0
stop_gaze_processing = False
stop_distraction_processing = False
demo.launch()