File size: 19,405 Bytes
b8b61aa
 
 
 
 
4aecca0
b8b61aa
 
1b36b40
b9c2e9c
 
b8b61aa
 
 
1b36b40
 
 
 
b8b61aa
 
1b36b40
 
 
 
 
 
 
 
 
 
 
 
 
 
b8b61aa
b9c2e9c
 
 
b8b61aa
b9c2e9c
 
1b36b40
 
b9c2e9c
 
 
 
 
 
 
 
 
 
 
1b36b40
 
 
 
 
 
 
 
 
 
b9c2e9c
 
 
 
1b36b40
b9c2e9c
1b36b40
 
 
 
 
b9c2e9c
1b36b40
b8b61aa
 
b9c2e9c
1b36b40
b8b61aa
 
 
 
 
1b36b40
 
 
 
 
 
 
 
 
 
b8b61aa
1b36b40
b8b61aa
 
 
 
 
1b36b40
 
b8b61aa
1b36b40
 
 
 
 
 
 
 
b8b61aa
 
1b36b40
 
 
b8b61aa
1b36b40
 
 
 
 
 
 
 
 
 
b8b61aa
1b36b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8b61aa
1b36b40
 
b8b61aa
1b36b40
 
 
b8b61aa
1b36b40
 
 
 
b8b61aa
1b36b40
 
 
 
b8b61aa
1b36b40
b8b61aa
1b36b40
 
 
 
b8b61aa
 
1b36b40
 
 
 
b8b61aa
1b36b40
b8b61aa
 
1b36b40
b8b61aa
1b36b40
b8b61aa
 
 
 
 
1b36b40
b8b61aa
 
 
 
 
b9c2e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b36b40
b9c2e9c
 
 
 
1b36b40
 
 
 
 
 
 
 
 
a3ae3eb
 
1b36b40
a3ae3eb
1b36b40
a3ae3eb
1b36b40
a3ae3eb
1b36b40
a3ae3eb
 
4aecca0
a3ae3eb
 
1b36b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ae3eb
1b36b40
 
 
a3ae3eb
1b36b40
 
 
 
 
 
 
 
a3ae3eb
1b36b40
 
 
 
4aecca0
1b36b40
 
 
a3ae3eb
1b36b40
 
 
a3ae3eb
1b36b40
 
 
 
a3ae3eb
1b36b40
a3ae3eb
 
1b36b40
a3ae3eb
1b36b40
 
a3ae3eb
1b36b40
 
a3ae3eb
1b36b40
 
 
 
 
 
4aecca0
b9c2e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b36b40
 
b9c2e9c
 
 
1b36b40
b9c2e9c
1b36b40
b9c2e9c
 
1b36b40
b9c2e9c
 
 
 
4aecca0
 
 
 
 
 
 
 
 
 
 
 
b9c2e9c
 
 
b8b61aa
 
 
1b36b40
 
 
 
 
 
 
 
 
 
b9c2e9c
 
4aecca0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import gradio as gr
import cv2
import numpy as np
import tempfile
import os
import time
from scripts.inference import GazePredictor
from utils.ear_utils import BlinkDetector
from gradio_webrtc import WebRTC
from ultralytics import YOLO
import torch

def smooth_values(history, current_value, window_size=5):
    if current_value is not None:
        if isinstance(current_value, np.ndarray):
            history.append(current_value)
        elif isinstance(current_value, (int, float)):
            history.append(current_value)
    if len(history) > window_size:
        history.pop(0)

    if not history:
        return current_value

    if all(isinstance(item, np.ndarray) for item in history):
        first_shape = history[0].shape
        if all(item.shape == first_shape for item in history):
            return np.mean(history, axis=0)
        else:
            return history[-1] if history else None
    elif all(isinstance(item, (int, float)) for item in history):
        return np.mean(history)
    else:
        return history[-1] if history else None

# --- Model Paths ---
GAZE_MODEL_PATH = os.path.join("models", "gaze_estimation_model.pth")
DISTRACTION_MODEL_PATH = "best.pt"

# --- Global Initializations ---
gaze_predictor = GazePredictor(GAZE_MODEL_PATH)
blink_detector = BlinkDetector()

# Load Distraction Model
distraction_model = YOLO(DISTRACTION_MODEL_PATH)
distraction_model.to('cpu')

# Distraction Class Names
distraction_class_names = [
    'safe driving', 'drinking', 'eating', 'hair and makeup',
    'operating radio', 'talking on phone', 'talking to passenger'
]

# --- Global State Variables for Gaze Webcam ---
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count_webcam = 0
stop_gaze_processing = False

# --- Global State Variables for Distraction Webcam ---
stop_distraction_processing = False

# Constants
GAZE_STABILITY_THRESHOLD = 0.5
TIME_THRESHOLD = 15
BLINK_RATE_THRESHOLD = 1
EYE_CLOSURE_THRESHOLD = 10
HEAD_STABILITY_THRESHOLD = 0.05
DISTRACTION_CONF_THRESHOLD = 0.1

def analyze_video(input_video):
    cap = cv2.VideoCapture(input_video)
    local_gaze_predictor = GazePredictor(GAZE_MODEL_PATH)
    local_blink_detector = BlinkDetector()
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    temp_fd, temp_path = tempfile.mkstemp(suffix='.mp4')
    os.close(temp_fd)
    out = None

    video_gaze_history = []
    video_head_history = []
    video_ear_history = []
    video_stable_gaze_time = 0
    video_stable_head_time = 0
    video_eye_closed_time = 0
    video_blink_count = 0
    video_start_time = 0
    video_is_unconscious = False
    video_frame_count = 0

    fps = cap.get(cv2.CAP_PROP_FPS) or 30

    while True:
        ret, frame = cap.read()
        if not ret:
            break
        video_frame_count += 1
        current_time_video = video_frame_count / fps

        if video_start_time == 0:
            video_start_time = current_time_video

        head_pose_gaze, gaze_h, gaze_v = local_gaze_predictor.predict_gaze(frame)
        current_gaze = np.array([gaze_h, gaze_v]) if gaze_h is not None and gaze_v is not None else None
        smoothed_gaze = smooth_values(video_gaze_history, current_gaze)

        ear, left_eye, right_eye, head_pose, left_iris, right_iris = local_blink_detector.detect_blinks(frame)

        if ear is None:
            cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            smoothed_head = smooth_values(video_head_history, None)
            smoothed_ear = smooth_values(video_ear_history, None)
        else:
            smoothed_head = smooth_values(video_head_history, head_pose)
            smoothed_ear = smooth_values(video_ear_history, ear)
            if smoothed_ear >= local_blink_detector.EAR_THRESHOLD and left_iris and right_iris:
                if all(isinstance(coord, (int, float)) and coord >= 0 for coord in left_iris) and \
                   all(isinstance(coord, (int, float)) and coord >= 0 for coord in right_iris):
                    try:
                        cv2.drawMarker(frame, tuple(map(int, left_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
                        cv2.drawMarker(frame, tuple(map(int, right_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
                    except OverflowError:
                        print(f"Warning: OverflowError drawing iris markers at {left_iris}, {right_iris}")

        gaze_text_h = f"Gaze H: {smoothed_gaze[0]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 0 else "Gaze H: N/A"
        gaze_text_v = f"Gaze V: {smoothed_gaze[1]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 1 else "Gaze V: N/A"
        head_text = f"Head Pose: {smoothed_head:.2f}" if smoothed_head is not None else "Head Pose: N/A"
        ear_text = f"EAR: {smoothed_ear:.2f}" if smoothed_ear is not None else "EAR: N/A"

        cv2.putText(frame, gaze_text_h, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        cv2.putText(frame, gaze_text_v, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        cv2.putText(frame, head_text, (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        cv2.putText(frame, ear_text, (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)

        if len(video_gaze_history) > 1 and smoothed_gaze is not None and video_gaze_history[-2] is not None:
            try:
                gaze_diff = np.sqrt(np.sum((smoothed_gaze - video_gaze_history[-2])**2))
                if gaze_diff < GAZE_STABILITY_THRESHOLD:
                    if video_stable_gaze_time == 0:
                        video_stable_gaze_time = current_time_video
                else:
                    video_stable_gaze_time = 0
            except TypeError:
                video_stable_gaze_time = 0
        else:
            video_stable_gaze_time = 0

        if len(video_head_history) > 1 and smoothed_head is not None and video_head_history[-2] is not None:
            head_diff = abs(smoothed_head - video_head_history[-2])
            if head_diff < HEAD_STABILITY_THRESHOLD:
                if video_stable_head_time == 0:
                    video_stable_head_time = current_time_video
            else:
                video_stable_head_time = 0
        else:
            video_stable_head_time = 0

        if ear is not None and smoothed_ear is not None and smoothed_ear < local_blink_detector.EAR_THRESHOLD:
            if video_eye_closed_time == 0:
                video_eye_closed_time = current_time_video
            elif current_time_video - video_eye_closed_time > EYE_CLOSURE_THRESHOLD:
                cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
        elif ear is not None:
            if video_eye_closed_time > 0 and current_time_video - video_eye_closed_time < 0.5:
                video_blink_count += 1
            video_eye_closed_time = 0
        else:
            video_eye_closed_time = 0

        elapsed_seconds_video = current_time_video - video_start_time if video_start_time > 0 else 0
        elapsed_minutes_video = elapsed_seconds_video / 60
        blink_rate = video_blink_count / elapsed_minutes_video if elapsed_minutes_video > 0 else 0
        cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)

        unconscious_conditions = [
            video_stable_gaze_time > 0 and current_time_video - video_stable_gaze_time > TIME_THRESHOLD,
            blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes_video > 1,
            video_eye_closed_time > 0 and current_time_video - video_eye_closed_time > EYE_CLOSURE_THRESHOLD,
            video_stable_head_time > 0 and current_time_video - video_stable_head_time > TIME_THRESHOLD
        ]

        if sum(unconscious_conditions) >= 2:
            cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
            video_is_unconscious = True
        else:
            video_is_unconscious = False

        if out is None:
            h, w = frame.shape[:2]
            out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
        out.write(frame)

    cap.release()
    if out:
        out.release()
    return temp_path

def terminate_gaze_stream():
    global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
    global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing

    print("Gaze Termination signal received. Stopping processing and resetting state.")
    stop_gaze_processing = True
    gaze_history = []
    head_history = []
    ear_history = []
    stable_gaze_time = 0
    stable_head_time = 0
    eye_closed_time = 0
    blink_count = 0
    start_time = 0
    is_unconscious = False
    frame_count_webcam = 0
    return "Gaze Processing Terminated. State Reset."

def terminate_distraction_stream():
    global stop_distraction_processing
    print("Distraction Termination signal received. Stopping processing.")
    stop_distraction_processing = True
    return "Distraction Processing Terminated."

def process_gaze_frame(frame):
    global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
    global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing

    if stop_gaze_processing:
        return np.zeros((480, 640, 3), dtype=np.uint8)

    if frame is None:
        return np.zeros((480, 640, 3), dtype=np.uint8)

    frame_count_webcam += 1
    current_time = time.time()
    if start_time == 0:
        start_time = current_time

    try:
        head_pose_gaze, gaze_h, gaze_v = gaze_predictor.predict_gaze(frame)
        current_gaze = np.array([gaze_h, gaze_v]) if gaze_h is not None and gaze_v is not None else None
        smoothed_gaze = smooth_values(gaze_history, current_gaze)

        ear, left_eye, right_eye, head_pose, left_iris, right_iris = blink_detector.detect_blinks(frame)

        if ear is None:
            cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            smoothed_head = smooth_values(head_history, None)
            smoothed_ear = smooth_values(ear_history, None)
        else:
            smoothed_head = smooth_values(head_history, head_pose)
            smoothed_ear = smooth_values(ear_history, ear)
            if smoothed_ear >= blink_detector.EAR_THRESHOLD and left_iris and right_iris:
                if all(isinstance(coord, (int, float)) and coord >= 0 for coord in left_iris) and \
                   all(isinstance(coord, (int, float)) and coord >= 0 for coord in right_iris):
                    try:
                        cv2.drawMarker(frame, tuple(map(int, left_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
                        cv2.drawMarker(frame, tuple(map(int, right_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
                    except OverflowError:
                        print(f"Warning: OverflowError drawing iris markers at {left_iris}, {right_iris}")

        gaze_text_h = f"Gaze H: {smoothed_gaze[0]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 0 else "Gaze H: N/A"
        gaze_text_v = f"Gaze V: {smoothed_gaze[1]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 1 else "Gaze V: N/A"
        head_text = f"Head Pose: {smoothed_head:.2f}" if smoothed_head is not None else "Head Pose: N/A"
        ear_text = f"EAR: {smoothed_ear:.2f}" if smoothed_ear is not None else "EAR: N/A"

        cv2.putText(frame, gaze_text_h, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        cv2.putText(frame, gaze_text_v, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        cv2.putText(frame, head_text, (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        cv2.putText(frame, ear_text, (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)

        if len(gaze_history) > 1 and smoothed_gaze is not None and gaze_history[-2] is not None:
            try:
                gaze_diff = np.sqrt(np.sum((smoothed_gaze - gaze_history[-2])**2))
                if gaze_diff < GAZE_STABILITY_THRESHOLD:
                    if stable_gaze_time == 0:
                        stable_gaze_time = current_time
                else:
                    stable_gaze_time = 0
            except TypeError:
                stable_gaze_time = 0
        else:
            stable_gaze_time = 0

        if len(head_history) > 1 and smoothed_head is not None and head_history[-2] is not None:
            head_diff = abs(smoothed_head - head_history[-2])
            if head_diff < HEAD_STABILITY_THRESHOLD:
                if stable_head_time == 0:
                    stable_head_time = current_time
            else:
                stable_head_time = 0
        else:
            stable_head_time = 0

        if ear is not None and smoothed_ear is not None and smoothed_ear < blink_detector.EAR_THRESHOLD:
            if eye_closed_time == 0:
                eye_closed_time = current_time
            elif current_time - eye_closed_time > EYE_CLOSURE_THRESHOLD:
                cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
        elif ear is not None:
            if eye_closed_time > 0 and current_time - eye_closed_time < 0.5:
                blink_count += 1
            eye_closed_time = 0
        else:
            eye_closed_time = 0

        elapsed_seconds = current_time - start_time if start_time > 0 else 0
        elapsed_minutes = elapsed_seconds / 60
        blink_rate = blink_count / elapsed_minutes if elapsed_minutes > 0 else 0
        cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)

        unconscious_conditions = [
            stable_gaze_time > 0 and current_time - stable_gaze_time > TIME_THRESHOLD,
            blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes > 1,
            eye_closed_time > 0 and current_time - eye_closed_time > EYE_CLOSURE_THRESHOLD,
            stable_head_time > 0 and current_time - stable_head_time > TIME_THRESHOLD
        ]

        if sum(unconscious_conditions) >= 2:
            cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
            is_unconscious = True
        else:
            is_unconscious = False

        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        return frame_rgb

    except Exception as e:
        print(f"Error processing frame: {e}")
        error_frame = np.zeros((480, 640, 3), dtype=np.uint8)
        if not error_frame.flags.writeable:
            error_frame = error_frame.copy()
        cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
        return error_frame

def process_distraction_frame(frame):
    global stop_distraction_processing

    if stop_distraction_processing:
        return np.zeros((480, 640, 3), dtype=np.uint8)

    if frame is None:
        return np.zeros((480, 640, 3), dtype=np.uint8)

    try:
        frame_to_process = frame
        results = distraction_model(frame_to_process, conf=DISTRACTION_CONF_THRESHOLD, verbose=False)

        display_text = "safe driving"
        alarm_action = None

        for result in results:
            if result.boxes is not None and len(result.boxes) > 0:
                boxes = result.boxes.xyxy.cpu().numpy()
                scores = result.boxes.conf.cpu().numpy()
                classes = result.boxes.cls.cpu().numpy()

                if len(boxes) > 0:
                    max_score_idx = scores.argmax()
                    detected_action_idx = int(classes[max_score_idx])
                    if 0 <= detected_action_idx < len(distraction_class_names):
                        detected_action = distraction_class_names[detected_action_idx]
                        confidence = scores[max_score_idx]
                        display_text = f"{detected_action}: {confidence:.2f}"
                        if detected_action != 'safe driving':
                            alarm_action = detected_action
                    else:
                        print(f"Warning: Detected class index {detected_action_idx} out of bounds.")
                        display_text = "Unknown Detection"

        if alarm_action:
            print(f"ALARM: Unsafe behavior detected - {alarm_action}!")
            cv2.putText(frame, f"ALARM: {alarm_action}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

        text_color = (0, 255, 0) if alarm_action is None else (0, 255, 255)
        cv2.putText(frame, display_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)

        return frame

    except Exception as e:
        print(f"Error processing distraction frame: {e}")
        error_frame = np.zeros((480, 640, 3), dtype=np.uint8)
        if not error_frame.flags.writeable:
            error_frame = error_frame.copy()
        cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
        return error_frame

def create_gaze_interface():
    with gr.Blocks() as gaze_demo:
        gr.Markdown("## Real-time Gaze & Drowsiness Tracking")
        with gr.Row():
            webcam_stream = WebRTC(label="Webcam Stream")
        with gr.Row():
            terminate_btn = gr.Button("Terminate Process")

        webcam_stream.stream(
            fn=process_gaze_frame,
            inputs=[webcam_stream],
            outputs=[webcam_stream],
            api_name="gaze_stream"
        )

        terminate_btn.click(fn=terminate_gaze_stream, inputs=None, outputs=None)

    return gaze_demo

def create_distraction_interface():
    with gr.Blocks() as distraction_demo:
        gr.Markdown("## Real-time Distraction Detection")
        with gr.Row():
            webcam_stream = WebRTC(label="Webcam Stream")
        with gr.Row():
            terminate_btn = gr.Button("Terminate Process")

        webcam_stream.stream(
            fn=process_distraction_frame,
            inputs=[webcam_stream],
            outputs=[webcam_stream],
            api_name="distraction_stream"
        )

        terminate_btn.click(fn=terminate_distraction_stream, inputs=None, outputs=None)

    return distraction_demo

def create_video_interface():
    video_demo = gr.Interface(
        fn=analyze_video,
        inputs=gr.Video(),
        outputs=gr.Video(),
        title="Video Analysis",
        description="Upload a video to analyze gaze and drowsiness."
    )
    return video_demo

demo = gr.TabbedInterface(
    [create_video_interface(), create_gaze_interface(), create_distraction_interface()],
    ["Video Upload", "Gaze & Drowsiness", "Distraction Detection"],
    title="Driver Monitoring System"
)

if __name__ == "__main__":
    gaze_history = []
    head_history = []
    ear_history = []
    stable_gaze_time = 0
    stable_head_time = 0
    eye_closed_time = 0
    blink_count = 0
    start_time = 0
    is_unconscious = False
    frame_count_webcam = 0
    stop_gaze_processing = False
    stop_distraction_processing = False
    demo.launch()