File size: 19,405 Bytes
b8b61aa 4aecca0 b8b61aa 1b36b40 b9c2e9c b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa b9c2e9c b8b61aa b9c2e9c 1b36b40 b9c2e9c 1b36b40 b9c2e9c 1b36b40 b9c2e9c 1b36b40 b9c2e9c 1b36b40 b8b61aa b9c2e9c 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa 1b36b40 b8b61aa b9c2e9c 1b36b40 b9c2e9c 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 4aecca0 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 4aecca0 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 a3ae3eb 1b36b40 4aecca0 b9c2e9c 1b36b40 b9c2e9c 1b36b40 b9c2e9c 1b36b40 b9c2e9c 1b36b40 b9c2e9c 4aecca0 b9c2e9c b8b61aa 1b36b40 b9c2e9c 4aecca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import gradio as gr
import cv2
import numpy as np
import tempfile
import os
import time
from scripts.inference import GazePredictor
from utils.ear_utils import BlinkDetector
from gradio_webrtc import WebRTC
from ultralytics import YOLO
import torch
def smooth_values(history, current_value, window_size=5):
if current_value is not None:
if isinstance(current_value, np.ndarray):
history.append(current_value)
elif isinstance(current_value, (int, float)):
history.append(current_value)
if len(history) > window_size:
history.pop(0)
if not history:
return current_value
if all(isinstance(item, np.ndarray) for item in history):
first_shape = history[0].shape
if all(item.shape == first_shape for item in history):
return np.mean(history, axis=0)
else:
return history[-1] if history else None
elif all(isinstance(item, (int, float)) for item in history):
return np.mean(history)
else:
return history[-1] if history else None
# --- Model Paths ---
GAZE_MODEL_PATH = os.path.join("models", "gaze_estimation_model.pth")
DISTRACTION_MODEL_PATH = "best.pt"
# --- Global Initializations ---
gaze_predictor = GazePredictor(GAZE_MODEL_PATH)
blink_detector = BlinkDetector()
# Load Distraction Model
distraction_model = YOLO(DISTRACTION_MODEL_PATH)
distraction_model.to('cpu')
# Distraction Class Names
distraction_class_names = [
'safe driving', 'drinking', 'eating', 'hair and makeup',
'operating radio', 'talking on phone', 'talking to passenger'
]
# --- Global State Variables for Gaze Webcam ---
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count_webcam = 0
stop_gaze_processing = False
# --- Global State Variables for Distraction Webcam ---
stop_distraction_processing = False
# Constants
GAZE_STABILITY_THRESHOLD = 0.5
TIME_THRESHOLD = 15
BLINK_RATE_THRESHOLD = 1
EYE_CLOSURE_THRESHOLD = 10
HEAD_STABILITY_THRESHOLD = 0.05
DISTRACTION_CONF_THRESHOLD = 0.1
def analyze_video(input_video):
cap = cv2.VideoCapture(input_video)
local_gaze_predictor = GazePredictor(GAZE_MODEL_PATH)
local_blink_detector = BlinkDetector()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_fd, temp_path = tempfile.mkstemp(suffix='.mp4')
os.close(temp_fd)
out = None
video_gaze_history = []
video_head_history = []
video_ear_history = []
video_stable_gaze_time = 0
video_stable_head_time = 0
video_eye_closed_time = 0
video_blink_count = 0
video_start_time = 0
video_is_unconscious = False
video_frame_count = 0
fps = cap.get(cv2.CAP_PROP_FPS) or 30
while True:
ret, frame = cap.read()
if not ret:
break
video_frame_count += 1
current_time_video = video_frame_count / fps
if video_start_time == 0:
video_start_time = current_time_video
head_pose_gaze, gaze_h, gaze_v = local_gaze_predictor.predict_gaze(frame)
current_gaze = np.array([gaze_h, gaze_v]) if gaze_h is not None and gaze_v is not None else None
smoothed_gaze = smooth_values(video_gaze_history, current_gaze)
ear, left_eye, right_eye, head_pose, left_iris, right_iris = local_blink_detector.detect_blinks(frame)
if ear is None:
cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
smoothed_head = smooth_values(video_head_history, None)
smoothed_ear = smooth_values(video_ear_history, None)
else:
smoothed_head = smooth_values(video_head_history, head_pose)
smoothed_ear = smooth_values(video_ear_history, ear)
if smoothed_ear >= local_blink_detector.EAR_THRESHOLD and left_iris and right_iris:
if all(isinstance(coord, (int, float)) and coord >= 0 for coord in left_iris) and \
all(isinstance(coord, (int, float)) and coord >= 0 for coord in right_iris):
try:
cv2.drawMarker(frame, tuple(map(int, left_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.drawMarker(frame, tuple(map(int, right_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
except OverflowError:
print(f"Warning: OverflowError drawing iris markers at {left_iris}, {right_iris}")
gaze_text_h = f"Gaze H: {smoothed_gaze[0]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 0 else "Gaze H: N/A"
gaze_text_v = f"Gaze V: {smoothed_gaze[1]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 1 else "Gaze V: N/A"
head_text = f"Head Pose: {smoothed_head:.2f}" if smoothed_head is not None else "Head Pose: N/A"
ear_text = f"EAR: {smoothed_ear:.2f}" if smoothed_ear is not None else "EAR: N/A"
cv2.putText(frame, gaze_text_h, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, gaze_text_v, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, head_text, (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, ear_text, (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
if len(video_gaze_history) > 1 and smoothed_gaze is not None and video_gaze_history[-2] is not None:
try:
gaze_diff = np.sqrt(np.sum((smoothed_gaze - video_gaze_history[-2])**2))
if gaze_diff < GAZE_STABILITY_THRESHOLD:
if video_stable_gaze_time == 0:
video_stable_gaze_time = current_time_video
else:
video_stable_gaze_time = 0
except TypeError:
video_stable_gaze_time = 0
else:
video_stable_gaze_time = 0
if len(video_head_history) > 1 and smoothed_head is not None and video_head_history[-2] is not None:
head_diff = abs(smoothed_head - video_head_history[-2])
if head_diff < HEAD_STABILITY_THRESHOLD:
if video_stable_head_time == 0:
video_stable_head_time = current_time_video
else:
video_stable_head_time = 0
else:
video_stable_head_time = 0
if ear is not None and smoothed_ear is not None and smoothed_ear < local_blink_detector.EAR_THRESHOLD:
if video_eye_closed_time == 0:
video_eye_closed_time = current_time_video
elif current_time_video - video_eye_closed_time > EYE_CLOSURE_THRESHOLD:
cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
elif ear is not None:
if video_eye_closed_time > 0 and current_time_video - video_eye_closed_time < 0.5:
video_blink_count += 1
video_eye_closed_time = 0
else:
video_eye_closed_time = 0
elapsed_seconds_video = current_time_video - video_start_time if video_start_time > 0 else 0
elapsed_minutes_video = elapsed_seconds_video / 60
blink_rate = video_blink_count / elapsed_minutes_video if elapsed_minutes_video > 0 else 0
cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
unconscious_conditions = [
video_stable_gaze_time > 0 and current_time_video - video_stable_gaze_time > TIME_THRESHOLD,
blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes_video > 1,
video_eye_closed_time > 0 and current_time_video - video_eye_closed_time > EYE_CLOSURE_THRESHOLD,
video_stable_head_time > 0 and current_time_video - video_stable_head_time > TIME_THRESHOLD
]
if sum(unconscious_conditions) >= 2:
cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
video_is_unconscious = True
else:
video_is_unconscious = False
if out is None:
h, w = frame.shape[:2]
out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
out.write(frame)
cap.release()
if out:
out.release()
return temp_path
def terminate_gaze_stream():
global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing
print("Gaze Termination signal received. Stopping processing and resetting state.")
stop_gaze_processing = True
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count_webcam = 0
return "Gaze Processing Terminated. State Reset."
def terminate_distraction_stream():
global stop_distraction_processing
print("Distraction Termination signal received. Stopping processing.")
stop_distraction_processing = True
return "Distraction Processing Terminated."
def process_gaze_frame(frame):
global gaze_history, head_history, ear_history, stable_gaze_time, stable_head_time
global eye_closed_time, blink_count, start_time, is_unconscious, frame_count_webcam, stop_gaze_processing
if stop_gaze_processing:
return np.zeros((480, 640, 3), dtype=np.uint8)
if frame is None:
return np.zeros((480, 640, 3), dtype=np.uint8)
frame_count_webcam += 1
current_time = time.time()
if start_time == 0:
start_time = current_time
try:
head_pose_gaze, gaze_h, gaze_v = gaze_predictor.predict_gaze(frame)
current_gaze = np.array([gaze_h, gaze_v]) if gaze_h is not None and gaze_v is not None else None
smoothed_gaze = smooth_values(gaze_history, current_gaze)
ear, left_eye, right_eye, head_pose, left_iris, right_iris = blink_detector.detect_blinks(frame)
if ear is None:
cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
smoothed_head = smooth_values(head_history, None)
smoothed_ear = smooth_values(ear_history, None)
else:
smoothed_head = smooth_values(head_history, head_pose)
smoothed_ear = smooth_values(ear_history, ear)
if smoothed_ear >= blink_detector.EAR_THRESHOLD and left_iris and right_iris:
if all(isinstance(coord, (int, float)) and coord >= 0 for coord in left_iris) and \
all(isinstance(coord, (int, float)) and coord >= 0 for coord in right_iris):
try:
cv2.drawMarker(frame, tuple(map(int, left_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.drawMarker(frame, tuple(map(int, right_iris)), (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
except OverflowError:
print(f"Warning: OverflowError drawing iris markers at {left_iris}, {right_iris}")
gaze_text_h = f"Gaze H: {smoothed_gaze[0]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 0 else "Gaze H: N/A"
gaze_text_v = f"Gaze V: {smoothed_gaze[1]:.2f}" if smoothed_gaze is not None and len(smoothed_gaze) > 1 else "Gaze V: N/A"
head_text = f"Head Pose: {smoothed_head:.2f}" if smoothed_head is not None else "Head Pose: N/A"
ear_text = f"EAR: {smoothed_ear:.2f}" if smoothed_ear is not None else "EAR: N/A"
cv2.putText(frame, gaze_text_h, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, gaze_text_v, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, head_text, (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(frame, ear_text, (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
if len(gaze_history) > 1 and smoothed_gaze is not None and gaze_history[-2] is not None:
try:
gaze_diff = np.sqrt(np.sum((smoothed_gaze - gaze_history[-2])**2))
if gaze_diff < GAZE_STABILITY_THRESHOLD:
if stable_gaze_time == 0:
stable_gaze_time = current_time
else:
stable_gaze_time = 0
except TypeError:
stable_gaze_time = 0
else:
stable_gaze_time = 0
if len(head_history) > 1 and smoothed_head is not None and head_history[-2] is not None:
head_diff = abs(smoothed_head - head_history[-2])
if head_diff < HEAD_STABILITY_THRESHOLD:
if stable_head_time == 0:
stable_head_time = current_time
else:
stable_head_time = 0
else:
stable_head_time = 0
if ear is not None and smoothed_ear is not None and smoothed_ear < blink_detector.EAR_THRESHOLD:
if eye_closed_time == 0:
eye_closed_time = current_time
elif current_time - eye_closed_time > EYE_CLOSURE_THRESHOLD:
cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
elif ear is not None:
if eye_closed_time > 0 and current_time - eye_closed_time < 0.5:
blink_count += 1
eye_closed_time = 0
else:
eye_closed_time = 0
elapsed_seconds = current_time - start_time if start_time > 0 else 0
elapsed_minutes = elapsed_seconds / 60
blink_rate = blink_count / elapsed_minutes if elapsed_minutes > 0 else 0
cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
unconscious_conditions = [
stable_gaze_time > 0 and current_time - stable_gaze_time > TIME_THRESHOLD,
blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes > 1,
eye_closed_time > 0 and current_time - eye_closed_time > EYE_CLOSURE_THRESHOLD,
stable_head_time > 0 and current_time - stable_head_time > TIME_THRESHOLD
]
if sum(unconscious_conditions) >= 2:
cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
is_unconscious = True
else:
is_unconscious = False
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb
except Exception as e:
print(f"Error processing frame: {e}")
error_frame = np.zeros((480, 640, 3), dtype=np.uint8)
if not error_frame.flags.writeable:
error_frame = error_frame.copy()
cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
return error_frame
def process_distraction_frame(frame):
global stop_distraction_processing
if stop_distraction_processing:
return np.zeros((480, 640, 3), dtype=np.uint8)
if frame is None:
return np.zeros((480, 640, 3), dtype=np.uint8)
try:
frame_to_process = frame
results = distraction_model(frame_to_process, conf=DISTRACTION_CONF_THRESHOLD, verbose=False)
display_text = "safe driving"
alarm_action = None
for result in results:
if result.boxes is not None and len(result.boxes) > 0:
boxes = result.boxes.xyxy.cpu().numpy()
scores = result.boxes.conf.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
if len(boxes) > 0:
max_score_idx = scores.argmax()
detected_action_idx = int(classes[max_score_idx])
if 0 <= detected_action_idx < len(distraction_class_names):
detected_action = distraction_class_names[detected_action_idx]
confidence = scores[max_score_idx]
display_text = f"{detected_action}: {confidence:.2f}"
if detected_action != 'safe driving':
alarm_action = detected_action
else:
print(f"Warning: Detected class index {detected_action_idx} out of bounds.")
display_text = "Unknown Detection"
if alarm_action:
print(f"ALARM: Unsafe behavior detected - {alarm_action}!")
cv2.putText(frame, f"ALARM: {alarm_action}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
text_color = (0, 255, 0) if alarm_action is None else (0, 255, 255)
cv2.putText(frame, display_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)
return frame
except Exception as e:
print(f"Error processing distraction frame: {e}")
error_frame = np.zeros((480, 640, 3), dtype=np.uint8)
if not error_frame.flags.writeable:
error_frame = error_frame.copy()
cv2.putText(error_frame, f"Error: {e}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
return error_frame
def create_gaze_interface():
with gr.Blocks() as gaze_demo:
gr.Markdown("## Real-time Gaze & Drowsiness Tracking")
with gr.Row():
webcam_stream = WebRTC(label="Webcam Stream")
with gr.Row():
terminate_btn = gr.Button("Terminate Process")
webcam_stream.stream(
fn=process_gaze_frame,
inputs=[webcam_stream],
outputs=[webcam_stream],
api_name="gaze_stream"
)
terminate_btn.click(fn=terminate_gaze_stream, inputs=None, outputs=None)
return gaze_demo
def create_distraction_interface():
with gr.Blocks() as distraction_demo:
gr.Markdown("## Real-time Distraction Detection")
with gr.Row():
webcam_stream = WebRTC(label="Webcam Stream")
with gr.Row():
terminate_btn = gr.Button("Terminate Process")
webcam_stream.stream(
fn=process_distraction_frame,
inputs=[webcam_stream],
outputs=[webcam_stream],
api_name="distraction_stream"
)
terminate_btn.click(fn=terminate_distraction_stream, inputs=None, outputs=None)
return distraction_demo
def create_video_interface():
video_demo = gr.Interface(
fn=analyze_video,
inputs=gr.Video(),
outputs=gr.Video(),
title="Video Analysis",
description="Upload a video to analyze gaze and drowsiness."
)
return video_demo
demo = gr.TabbedInterface(
[create_video_interface(), create_gaze_interface(), create_distraction_interface()],
["Video Upload", "Gaze & Drowsiness", "Distraction Detection"],
title="Driver Monitoring System"
)
if __name__ == "__main__":
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count_webcam = 0
stop_gaze_processing = False
stop_distraction_processing = False
demo.launch()
|