File size: 2,257 Bytes
dbc4efa
839848c
b28416c
839848c
a0cdb9e
dbc4efa
a0cdb9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839848c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_pinecone import PineconeVectorStore
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from pinecone import Pinecone
import asyncio
from langchain_community.document_loaders.sitemap import SitemapLoader

def get_website_data(sitemap_url):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    loader = SitemapLoader(
    sitemap_url
    )
    docs = loader.load()
    return docs

def split_data(docs):
    text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 1000,
    chunk_overlap  = 200,
    length_function = len,
    )
    docs_chunks = text_splitter.split_documents(docs)
    return docs_chunks

def create_embeddings():
    embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
    return embeddings

def push_to_pinecone(pinecone_apikey, pinecone_index_name, embeddings, docs):
    # Initialize Pinecone with v3 client
    pc = Pinecone(api_key=pinecone_apikey)
    
    # Check if index exists, if not create it
    existing_indexes = [index_info["name"] for index_info in pc.list_indexes()]
    
    if pinecone_index_name not in existing_indexes:
        # You may need to adjust dimension based on your embedding model
        pc.create_index(
            name=pinecone_index_name,
            dimension=384,  # dimension for all-MiniLM-L6-v2
            metric="cosine"
        )
    
    # Get the index
    index = pc.Index(pinecone_index_name)
    
    # Create vector store
    vector_store = PineconeVectorStore(index=index, embedding=embeddings)
    
    # Add documents
    vector_store.add_documents(documents=docs)
    
    return vector_store

def pull_from_pinecone(pinecone_apikey, pinecone_index_name, embeddings):
    # Initialize Pinecone with v3 client
    pc = Pinecone(api_key=pinecone_apikey)
    
    # Get the index
    index = pc.Index(pinecone_index_name)
    
    # Create vector store from existing index
    vector_store = PineconeVectorStore(index=index, embedding=embeddings)
    
    return vector_store

def get_similar_docs(vector_store, query, k=2):
    similar_docs = vector_store.similarity_search(query, k=k)
    return similar_docs