Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
+
import torch
|
4 |
+
from datasets import load_dataset
|
5 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
+
from llama_index.vector_stores.faiss import FaissVectorStore
|
8 |
+
import faiss
|
9 |
+
import os
|
10 |
+
from huggingface_hub import login
|
11 |
+
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
# Log in to Hugging Face using environment variable
|
15 |
+
hf_token = os.getenv("HF_TOKEN")
|
16 |
+
if not hf_token:
|
17 |
+
raise ValueError("HF_TOKEN environment variable not set")
|
18 |
+
login(hf_token)
|
19 |
+
|
20 |
+
# Load Dataset and Prepare Knowledge Base
|
21 |
+
ds = load_dataset("codeparrot/apps", "all", split="train")
|
22 |
+
os.makedirs("knowledge_base", exist_ok=True)
|
23 |
+
for i, example in enumerate(ds.select(range(100))): # Reduced to 100 for free tier
|
24 |
+
solution = example['solutions'][0] if example['solutions'] else "No solution available"
|
25 |
+
with open(f"knowledge_base/doc_{i}.txt", "w", encoding="utf-8") as f:
|
26 |
+
f.write(f"### Problem\n{example['question']}\n\n### Solution\n{solution}")
|
27 |
+
documents = SimpleDirectoryReader("knowledge_base").load_data()
|
28 |
+
|
29 |
+
# Setup RAG
|
30 |
+
embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
31 |
+
Settings.embed_model = embed_model
|
32 |
+
d = 384
|
33 |
+
faiss_index = faiss.IndexFlatL2(d)
|
34 |
+
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
35 |
+
index = VectorStoreIndex.from_documents(documents, vector_store=vector_store)
|
36 |
+
|
37 |
+
# Load LLaMA Model
|
38 |
+
model_name = "meta-llama/Llama-3.2-1B-Instruct"
|
39 |
+
quant_config = BitsAndBytesConfig(
|
40 |
+
load_in_4bit=True,
|
41 |
+
bnb_4bit_compute_dtype=torch.float16,
|
42 |
+
bnb_4bit_quant_type="nf4",
|
43 |
+
bnb_4bit_use_double_quant=True
|
44 |
+
)
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(
|
48 |
+
model_name,
|
49 |
+
quantization_config=quant_config,
|
50 |
+
device_map="auto" if device == "cuda" else None
|
51 |
+
)
|
52 |
+
if tokenizer.pad_token is None:
|
53 |
+
tokenizer.pad_token = tokenizer.eos_token
|
54 |
+
|
55 |
+
@app.get("/solve")
|
56 |
+
async def solve_problem(problem: str, top_k: int = 1):
|
57 |
+
retriever = index.as_retriever(similarity_top_k=top_k)
|
58 |
+
retrieved_nodes = retriever.retrieve(problem)
|
59 |
+
context = retrieved_nodes[0].text if retrieved_nodes else "No relevant context found."
|
60 |
+
prompt = f"Given the following competitive programming problem:\n\n{problem}\n\nRelevant context:\n{context}\n\nGenerate a solution in Python:"
|
61 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
62 |
+
outputs = model.generate(
|
63 |
+
**inputs,
|
64 |
+
max_new_tokens=200,
|
65 |
+
temperature=0.7,
|
66 |
+
top_p=0.9,
|
67 |
+
do_sample=True
|
68 |
+
)
|
69 |
+
solution = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
70 |
+
return {"solution": solution, "context": context}
|