File size: 695 Bytes
340eda5
22cc8da
 
340eda5
22cc8da
 
340eda5
22cc8da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
import yolov5
from PIL import Image

# Load YOLOv5 model
model = yolov5.load("keremberke/yolov5n-garbage")

# Set model parameters
model.conf = 0.25  # Confidence threshold
model.iou = 0.45  # IoU threshold

def predict(img):
    # Convert image to PIL format
    img = Image.fromarray(img)
    # Perform inference
    results = model(img, size=640)
    # Show results
    results.save(save_dir="results/")
    return "results/image0.jpg"

# Gradio UI
iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(),
    outputs=gr.Image(),
    title="Garbage Object Detection",
    description="Upload an image and the model will detect garbage objects in it."
)

iface.launch()