Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +12 -0
- app.py +22 -0
- requirements.txt +3 -0
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: G3 Tweet Classifier
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.28.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
# Load a tweet classification model from Hugging Face
|
4 |
+
classifier = pipeline("text-classification", model="finiteautomata/bertweet-base-sentiment-analysis")
|
5 |
+
|
6 |
+
def classify_tweet(tweet):
|
7 |
+
result = classifier(tweet)[0]
|
8 |
+
label = result['label']
|
9 |
+
score = result['score']
|
10 |
+
return f"Label: {label} (Confidence: {score:.2f})"
|
11 |
+
|
12 |
+
# Create the Gradio interface
|
13 |
+
iface = gr.Interface(
|
14 |
+
fn=classify_tweet,
|
15 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter a tweet here..."),
|
16 |
+
outputs="text",
|
17 |
+
title="Tweet Classifier",
|
18 |
+
description="Enter a tweet and click the button to classify it!"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Launch the app
|
22 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|