Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,21 @@
|
|
1 |
-
|
2 |
-
from transformers import
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, BertForSequenceClassification
|
3 |
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
|
5 |
+
model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
|
6 |
|
7 |
+
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
8 |
+
|
9 |
+
with torch.no_grad():
|
10 |
+
logits = model(**inputs).logits
|
11 |
+
|
12 |
+
predicted_class_id = logits.argmax().item()
|
13 |
+
model.config.id2label[predicted_class_id]
|
14 |
+
|
15 |
+
# To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
|
16 |
+
num_labels = len(model.config.id2label)
|
17 |
+
model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity", num_labels=num_labels)
|
18 |
+
|
19 |
+
labels = torch.tensor([1])
|
20 |
+
loss = model(**inputs, labels=labels).loss
|
21 |
+
round(loss.item(), 2)
|