File size: 5,218 Bytes
9f50d19
7cde845
 
9f50d19
 
7cde845
a6f2237
9f50d19
 
 
 
 
7cde845
 
 
 
9f50d19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cde845
 
9f50d19
 
 
 
7cde845
 
9f50d19
 
7cde845
 
9f50d19
7cde845
 
9f50d19
7cde845
 
 
 
 
 
 
 
9f50d19
7cde845
 
 
9f50d19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65ea836
 
 
9f50d19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cde845
9f50d19
65ea836
9f50d19
65ea836
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import torch
import soundfile as sf
import pyttsx3
import threading
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from gradio_client import Client

# Initialize session state
if "messages" not in st.session_state:
    st.session_state["messages"] = []  # Store chat history

# Load the Wav2Vec 2.0 model and processor from Hugging Face
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")

# Function to generate a response using Gradio client
def generate_response(query):
    try:
        client = Client("Gopikanth123/llama2")
        result = client.predict(query=query, api_name="/predict")
        return result
    except Exception as e:
        return f"Error communicating with the Gradio backend: {e}"

# Function to handle user input and bot response
def handle_user_input(user_input):
    if user_input:
        # Add user message to session state
        st.session_state["messages"].append({"user": user_input})

        # Generate bot response
        response = generate_response(user_input)
        st.session_state["messages"].append({"bot": response})

        # Speak out bot response in a new thread to avoid blocking
        threading.Thread(target=speak_text, args=(response,), daemon=True).start()

# Function to speak text (Voice Output)
def speak_text(text):
    engine = pyttsx3.init()
    engine.stop()  # Ensure no previous loop is running
    engine.say(text)
    engine.runAndWait()

# Function to update chat history dynamically
def update_chat_history():
    chat_history = st.session_state["messages"]
    for msg in chat_history:
        if "user" in msg:
            st.markdown(f"<div class='chat-bubble user-message'><strong>You:</strong> {msg['user']}</div>", unsafe_allow_html=True)
        if "bot" in msg:
            st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)

# Function to recognize speech using Hugging Face's Wav2Vec 2.0
def recognize_speech_huggingface():
    st.info("Listening... Speak into the microphone.")
    fs = 16000  # Sample rate in Hz
    duration = 5  # Duration in seconds

    # Record the audio using sounddevice or use a pre-recorded file
    # (Here we're using soundfile to record from microphone)
    audio_data = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='int16')
    sd.wait()
    # Save the audio file to a temporary buffer
    sf.write('audio.wav', audio_data, fs)

    # Read the audio file using soundfile and process it
    audio_input, _ = sf.read('audio.wav')

    # Preprocess the audio and recognize the speech
    inputs = processor(audio_input, return_tensors="pt", sampling_rate=fs)
    with torch.no_grad():
        logits = model(input_values=inputs.input_values).logits

    # Decode the logits to text
    predicted_ids = torch.argmax(logits, dim=-1)
    recognized_text = processor.decode(predicted_ids[0])

    st.session_state["user_input"] = recognized_text
    st.success(f"Recognized Text: {recognized_text}")
    handle_user_input(recognized_text)

# Main Streamlit app
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")
st.markdown(
    """
    <style>
    .stButton>button {
        background-color: #6C63FF;
        color: white;
        font-size: 16px;
        border-radius: 10px;
        padding: 10px 20px;
    }
    .stTextInput>div>input {
        border: 2px solid #6C63FF;
        border-radius: 10px;
        padding: 10px;
    }
    .chat-container {
        background-color: #F7F9FC;
        padding: 20px;
        border-radius: 15px;
        max-height: 400px;
        overflow-y: auto;
    }
    .chat-bubble {
        padding: 10px 15px;
        border-radius: 15px;
        margin: 5px 0;
        max-width: 80%;
        display: inline-block;
    }
    .user-message {
        background-color: #D1C4E9;
        text-align: left;
        margin-left: auto;
    }
    .bot-message {
        background-color: #BBDEFB;
        text-align: left;
        margin-right: auto;
    }
    .input-container {
        display: flex;
        justify-content: space-between;
        gap: 10px;
        padding: 10px 0;
    }
    </style>
    """,
    unsafe_allow_html=True
)

st.title("🤖 Chat with Llama2 Bot")
st.markdown(
    """
    Welcome to the *Llama2 Chatbot*!   
    - *Type* your message below, or   
    - *Use the microphone* to speak to the bot.   
    """
)

# Display chat history
chat_history_container = st.container()
with chat_history_container:
    # Add input field within a form
    with st.form(key='input_form', clear_on_submit=True):
        user_input = st.text_input("Type your message here...", placeholder="Hello, how are you?")
        submit_button = st.form_submit_button("Send")

        # Handle form submission
        if submit_button:
            handle_user_input(user_input)

    # Separate button for speech recognition outside of the form
    if st.button("Speak"):
        recognize_speech_huggingface()

    st.markdown("### Chat History")
    # Update chat history on every interaction
    update_chat_history()