Spaces:
Sleeping
Sleeping
File size: 5,253 Bytes
65ea836 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import streamlit as st
from gradio_client import Client
import speech_recognition as sr
import pyttsx3
import threading
# Initialize session state
if "messages" not in st.session_state:
st.session_state["messages"] = [] # Store chat history
# Function to generate a response using Gradio client
def generate_response(query):
try:
client = Client("Gopikanth123/llama2")
result = client.predict(query=query, api_name="/predict")
return result
except Exception as e:
return f"Error communicating with the Gradio backend: {e}"
# Function to handle user input and bot response
def handle_user_input(user_input):
if user_input:
# Add user message to session state
st.session_state["messages"].append({"user": user_input})
# Generate bot response
response = generate_response(user_input)
st.session_state["messages"].append({"bot": response})
# Speak out bot response in a new thread to avoid blocking
threading.Thread(target=speak_text, args=(response,), daemon=True).start()
# Function for Speech Recognition (Voice Input)
def recognize_speech():
recognizer = sr.Recognizer()
with sr.Microphone() as source:
st.info("Listening... Speak into the microphone.")
try:
audio = recognizer.listen(source, timeout=5, phrase_time_limit=10)
recognized_text = recognizer.recognize_google(audio)
st.session_state["user_input"] = recognized_text # Set recognized text to input field
st.success(f"Recognized Text: {recognized_text}")
handle_user_input(recognized_text)
except sr.WaitTimeoutError:
st.warning("Listening timed out. No speech detected. Please try again.")
except sr.UnknownValueError:
st.error("Sorry, I couldn't understand the audio. Try speaking more clearly.")
except sr.RequestError:
st.error("Could not request results; please check your internet connection.")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
# Function to speak text (Voice Output)
def speak_text(text):
engine = pyttsx3.init()
engine.stop() # Ensure no previous loop is running
engine.say(text)
engine.runAndWait()
# Main Streamlit app
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")
st.markdown(
"""
<style>
.stButton>button {
background-color: #6C63FF;
color: white;
font-size: 16px;
border-radius: 10px;
padding: 10px 20px;
}
.stTextInput>div>input {
border: 2px solid #6C63FF;
border-radius: 10px;
padding: 10px;
}
.chat-container {
background-color: #F7F9FC;
padding: 20px;
border-radius: 15px;
max-height: 400px;
overflow-y: auto;
}
.chat-bubble {
padding: 10px 15px;
border-radius: 15px;
margin: 5px 0;
max-width: 80%;
display: inline-block;
}
.user-message {
background-color: #D1C4E9;
text-align: left;
margin-left: auto;
}
.bot-message {
background-color: #BBDEFB;
text-align: left;
margin-right: auto;
}
.input-container {
display: flex;
justify-content: space-between;
gap: 10px;
padding: 10px 0;
}
</style>
""",
unsafe_allow_html=True
)
st.title("🤖 Chat with Llama2 Bot")
st.markdown(
"""
Welcome to the *Llama2 Chatbot*!
- *Type* your message below, or
- *Use the microphone* to speak to the bot.
"""
)
# Display chat history
chat_history_container = st.container()
with chat_history_container:
# st.markdown("### Chat History")
# st.markdown("<div class='chat-container' id='chat-container'>", unsafe_allow_html=True)
# Update chat history dynamically
def update_chat_history():
chat_history = st.session_state["messages"]
for msg in chat_history:
if "user" in msg:
st.markdown(f"<div class='chat-bubble user-message'><strong>You:</strong> {msg['user']}</div>", unsafe_allow_html=True)
if "bot" in msg:
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)
# Add input field within a form
with st.form(key='input_form', clear_on_submit=True):
user_input = st.text_input("Type your message here...", placeholder="Hello, how are you?")
submit_button = st.form_submit_button("Send")
# Handle form submission
if submit_button:
handle_user_input(user_input)
# update_chat_history()
# Separate button for speech recognition outside of the form
if st.button("Speak"):
recognize_speech()
# update_chat_history()
st.markdown("### Chat History")
# Update chat history on every interaction
update_chat_history() |