File size: 5,253 Bytes
65ea836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st  
from gradio_client import Client  
import speech_recognition as sr  
import pyttsx3  
import threading  

# Initialize session state  
if "messages" not in st.session_state:  
    st.session_state["messages"] = []  # Store chat history  

# Function to generate a response using Gradio client  
def generate_response(query):  
    try:  
        client = Client("Gopikanth123/llama2")  
        result = client.predict(query=query, api_name="/predict")  
        return result  
    except Exception as e:  
        return f"Error communicating with the Gradio backend: {e}"  

# Function to handle user input and bot response  
def handle_user_input(user_input):  
    if user_input:  
        # Add user message to session state  
        st.session_state["messages"].append({"user": user_input})  

        # Generate bot response  
        response = generate_response(user_input)  
        st.session_state["messages"].append({"bot": response})  

        # Speak out bot response in a new thread to avoid blocking  
        threading.Thread(target=speak_text, args=(response,), daemon=True).start()  

# Function for Speech Recognition (Voice Input)  
def recognize_speech():
    recognizer = sr.Recognizer()
    with sr.Microphone() as source:
        st.info("Listening... Speak into the microphone.")
        try:
            audio = recognizer.listen(source, timeout=5, phrase_time_limit=10)
            recognized_text = recognizer.recognize_google(audio)
            st.session_state["user_input"] = recognized_text  # Set recognized text to input field
            st.success(f"Recognized Text: {recognized_text}")
            handle_user_input(recognized_text)
        except sr.WaitTimeoutError:
            st.warning("Listening timed out. No speech detected. Please try again.")
        except sr.UnknownValueError:
            st.error("Sorry, I couldn't understand the audio. Try speaking more clearly.")
        except sr.RequestError:
            st.error("Could not request results; please check your internet connection.")
        except Exception as e:
            st.error(f"An unexpected error occurred: {e}")

# Function to speak text (Voice Output)  
def speak_text(text):  
    engine = pyttsx3.init()  
    engine.stop()  # Ensure no previous loop is running  
    engine.say(text)  
    engine.runAndWait()  

# Main Streamlit app  
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")  
st.markdown(  
    """  
    <style>  
    .stButton>button {  
        background-color: #6C63FF;  
        color: white;  
        font-size: 16px;  
        border-radius: 10px;  
        padding: 10px 20px;  
    }  
    .stTextInput>div>input {  
        border: 2px solid #6C63FF;  
        border-radius: 10px;  
        padding: 10px;  
    }  
    .chat-container {  
        background-color: #F7F9FC;  
        padding: 20px;  
        border-radius: 15px;  
        max-height: 400px;  
        overflow-y: auto;  
    }  
    .chat-bubble {  
        padding: 10px 15px;  
        border-radius: 15px;  
        margin: 5px 0;  
        max-width: 80%;  
        display: inline-block;  
    }  
    .user-message {  
        background-color: #D1C4E9;  
        text-align: left;  
        margin-left: auto;  
    }  
    .bot-message {  
        background-color: #BBDEFB;  
        text-align: left;  
        margin-right: auto;  
    }  
    .input-container {  
        display: flex;  
        justify-content: space-between;  
        gap: 10px;  
        padding: 10px 0;  
    }  
    </style>  
    """,  
    unsafe_allow_html=True  
)  

st.title("🤖 Chat with Llama2 Bot")  
st.markdown(  
    """  
    Welcome to the *Llama2 Chatbot*!   
    - *Type* your message below, or   
    - *Use the microphone* to speak to the bot.   
    """  
)  

# Display chat history  
chat_history_container = st.container()  
with chat_history_container:  
    # st.markdown("### Chat History")  
    # st.markdown("<div class='chat-container' id='chat-container'>", unsafe_allow_html=True)  

    # Update chat history dynamically  
    def update_chat_history():  
        chat_history = st.session_state["messages"]  
        for msg in chat_history:  
            if "user" in msg:  
                st.markdown(f"<div class='chat-bubble user-message'><strong>You:</strong> {msg['user']}</div>", unsafe_allow_html=True)  
            if "bot" in msg:  
                st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)  

    # Add input field within a form  
    with st.form(key='input_form', clear_on_submit=True):  
        user_input = st.text_input("Type your message here...", placeholder="Hello, how are you?")  
        submit_button = st.form_submit_button("Send")  

        # Handle form submission  
        if submit_button:  
            handle_user_input(user_input)  
            # update_chat_history()  

    # Separate button for speech recognition outside of the form  
    if st.button("Speak"):  
        recognize_speech()  
        # update_chat_history()  
    st.markdown("### Chat History")
    # Update chat history on every interaction  
    update_chat_history()