Spaces:
Sleeping
Sleeping
File size: 3,678 Bytes
8b6399b 242bba0 8b6399b 242bba0 8b6399b 242bba0 8b6399b 242bba0 8b6399b 242bba0 8b6399b 242bba0 8b6399b 242bba0 8b6399b 242bba0 df26c41 242bba0 df26c41 242bba0 df26c41 242bba0 8b6399b 242bba0 8b6399b 242bba0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import streamlit as st
import os
from io import StringIO
from llama_index.llms import HuggingFaceInferenceAPI
from llama_index.embeddings import HuggingFaceInferenceAPIEmbedding
from llama_index import ServiceContext, VectorStoreIndex
from llama_index.schema import Document
import uuid
from llama_index.vector_stores.types import MetadataFilters, ExactMatchFilter
inference_api_key = st.secrets["INFRERENCE_API_TOKEN"]
embed_model_name = st.text_input(
'Embed Model name', "Gooly/gte-small-en-fine-tuned-e-commerce")
llm_model_name = st.text_input(
'Embed Model name', "mistralai/Mistral-7B-Instruct-v0.2")
html_file = st.file_uploader("Upload a html file", type=["html"])
if st.button('Start Pipeline'):
if html_file is not None and embed_model_name is not None and llm_model_name is not None:
st.write('Running Pipeline')
llm = HuggingFaceInferenceAPI(
model_name=llm_model_name, token=inference_api_key)
embed_model = HuggingFaceInferenceAPIEmbedding(
model_name=embed_model_name,
token=inference_api_key,
model_kwargs={"device": ""},
encode_kwargs={"normalize_embeddings": True},
)
service_context = ServiceContext.from_defaults(
embed_model=embed_model, llm=llm)
stringio = StringIO(html_file.getvalue().decode("utf-8"))
string_data = stringio.read()
with st.expander("Uploaded HTML"):
st.write(string_data)
document_id = str(uuid.uuid4())
document = Document(text=string_data)
document.metadata["id"] = document_id
documents = [document]
filters = MetadataFilters(
filters=[ExactMatchFilter(key="id", value=document_id)])
index = VectorStoreIndex.from_documents(
documents, show_progress=True, metadata={"source": "HTML"}, service_context=service_context)
retriever = index.as_retriever()
ranked_nodes = retriever.retrieve(
"Get me all the information about the product")
with st.expander("Ranked Nodes"):
for node in ranked_nodes:
st.write(node.node.get_content(), "-> Score:", node.score)
query_engine = index.as_query_engine(
filters=filters, service_context=service_context)
response = query_engine.query(
"Get me all the information about the product")
st.write(response)
else:
st.error('Please fill in all the fields')
else:
st.write('Press start to begin')
# if html_file is not None:
# stringio = StringIO(html_file.getvalue().decode("utf-8"))
# string_data = stringio.read()
# with st.expander("Uploaded HTML"):
# st.write(string_data)
# document_id = str(uuid.uuid4())
# document = Document(text=string_data)
# document.metadata["id"] = document_id
# documents = [document]
# filters = MetadataFilters(
# filters=[ExactMatchFilter(key="id", value=document_id)])
# index = VectorStoreIndex.from_documents(
# documents, show_progress=True, metadata={"source": "HTML"}, service_context=service_context)
# retriever = index.as_retriever()
# ranked_nodes = retriever.retrieve(
# "Get me all the information about the product")
# with st.expander("Ranked Nodes"):
# for node in ranked_nodes:
# st.write(node.node.get_content(), "-> Score:", node.score)
# query_engine = index.as_query_engine(
# filters=filters, service_context=service_context)
# response = query_engine.query(
# "Get me all the information about the product")
# st.write(response)
|