Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
+
import requests
|
7 |
+
import json
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
# Ensure assets directory exists
|
11 |
+
Path("./assets").mkdir(parents=True, exist_ok=True)
|
12 |
+
|
13 |
+
# Function to call Groq API directly (avoiding the groq package)
|
14 |
+
def call_groq_api(image_base64, model, prompt):
|
15 |
+
api_key = os.environ.get("GROQ_API_KEY", "")
|
16 |
+
|
17 |
+
if not api_key:
|
18 |
+
return None, "Error: GROQ_API_KEY environment variable is not set."
|
19 |
+
|
20 |
+
headers = {
|
21 |
+
"Authorization": f"Bearer {api_key}",
|
22 |
+
"Content-Type": "application/json"
|
23 |
+
}
|
24 |
+
|
25 |
+
payload = {
|
26 |
+
"model": model,
|
27 |
+
"messages": [
|
28 |
+
{
|
29 |
+
"role": "user",
|
30 |
+
"content": [
|
31 |
+
{
|
32 |
+
"type": "text",
|
33 |
+
"text": prompt
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"type": "image_url",
|
37 |
+
"image_url": {
|
38 |
+
"url": f"data:image/png;base64,{image_base64}"
|
39 |
+
}
|
40 |
+
}
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"temperature": 0.1,
|
45 |
+
"max_tokens": 1000
|
46 |
+
}
|
47 |
+
|
48 |
+
try:
|
49 |
+
response = requests.post(
|
50 |
+
"https://api.groq.com/openai/v1/chat/completions",
|
51 |
+
headers=headers,
|
52 |
+
json=payload
|
53 |
+
)
|
54 |
+
response.raise_for_status()
|
55 |
+
return response.json()["choices"][0]["message"]["content"], None
|
56 |
+
except Exception as e:
|
57 |
+
return None, f"Error calling Groq API: {str(e)}"
|
58 |
+
|
59 |
+
# Page configuration
|
60 |
+
st.set_page_config(
|
61 |
+
page_title="Llama-3-2-90b-vision-preview",
|
62 |
+
page_icon="👁️",
|
63 |
+
layout="wide",
|
64 |
+
initial_sidebar_state="expanded"
|
65 |
+
)
|
66 |
+
|
67 |
+
# Add clear button to top right
|
68 |
+
col1, col2 = st.columns([6, 1])
|
69 |
+
with col1:
|
70 |
+
st.markdown("""
|
71 |
+
<img src="data:image/png;base64,{}" width="50" style="vertical-align: -12px;"> Llama-3-2-90b-vision-preview
|
72 |
+
""".format(base64.b64encode(open("img/llama.png", "rb").read()).decode()), unsafe_allow_html=True)
|
73 |
+
with col2:
|
74 |
+
if st.button("Clear 🗑️"):
|
75 |
+
if "ocr_result" in st.session_state:
|
76 |
+
del st.session_state["ocr_result"]
|
77 |
+
st.rerun()
|
78 |
+
|
79 |
+
st.markdown("Extract structured text from images using Vision Models!", unsafe_allow_html=True)
|
80 |
+
st.markdown("---")
|
81 |
+
|
82 |
+
# Move upload controls to sidebar
|
83 |
+
with st.sidebar:
|
84 |
+
st.header("Upload Image")
|
85 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
86 |
+
|
87 |
+
# Model selection
|
88 |
+
st.subheader("Model Settings")
|
89 |
+
model = st.selectbox(
|
90 |
+
"Select Vision Model",
|
91 |
+
["Llama-3-2-11b-vision-preview", "Llama-3-2-90b-vision-preview"],
|
92 |
+
index=0
|
93 |
+
)
|
94 |
+
|
95 |
+
if uploaded_file is not None:
|
96 |
+
# Display the uploaded image
|
97 |
+
image = Image.open(uploaded_file)
|
98 |
+
st.image(image, caption="Uploaded Image")
|
99 |
+
|
100 |
+
if st.button("Extract Text 🔍", type="primary"):
|
101 |
+
with st.spinner("Processing image..."):
|
102 |
+
try:
|
103 |
+
# Convert image for API
|
104 |
+
buffered = io.BytesIO()
|
105 |
+
image.save(buffered, format="PNG")
|
106 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
107 |
+
|
108 |
+
# Prepare the prompt
|
109 |
+
prompt = """Analyze the text in the provided image. Extract all readable content
|
110 |
+
and present it in a structured Markdown format that is clear, concise,
|
111 |
+
and well-organized. Ensure proper formatting (e.g., headings, lists, or
|
112 |
+
code blocks) as necessary to represent the content effectively."""
|
113 |
+
|
114 |
+
# Call the API
|
115 |
+
result, error = call_groq_api(img_str, model, prompt)
|
116 |
+
|
117 |
+
if error:
|
118 |
+
st.error(error)
|
119 |
+
else:
|
120 |
+
st.session_state["ocr_result"] = result
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"Error processing image: {str(e)}")
|
123 |
+
|
124 |
+
# Main content area for results
|
125 |
+
if "ocr_result" in st.session_state:
|
126 |
+
st.markdown(st.session_state["ocr_result"])
|
127 |
+
else:
|
128 |
+
st.info("Upload an image and click 'Extract Text' to see the results here.")
|
129 |
+
|
130 |
+
# Footer
|
131 |
+
st.markdown("---")
|
132 |
+
st.markdown("Made using Vision Models via Groq API")
|