compute_pool / app.py
Oscar Wang
Update app.py
b9c6f79 verified
raw
history blame
4.25 kB
import gradio as gr
import os
import subprocess
import tempfile
import shutil
from zipfile import ZipFile
import logging
import json
import psutil
from flask import Flask, request, jsonify
import threading
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Flask app
app = Flask(__name__)
connected_cpus = {}
# Endpoint to donate CPU resources
@app.route('/donate_cpu', methods=['POST'])
def donate_cpu_handler():
data = request.get_json()
host = data['host']
cpu_count = data['cpu_count']
connected_cpus[host] = {"cpu_count": cpu_count, "usage": 0.0}
logger.info(f"CPU donated by {host} with {cpu_count} CPUs.")
return jsonify({"status": "success", "message": f"CPU donated by {host}"})
# Endpoint to update CPU usage
@app.route('/update_cpu_usage', methods=['POST'])
def update_cpu_usage_handler():
data = request.get_json()
host = data['host']
usage = data['usage']
if host in connected_cpus:
connected_cpus[host]['usage'] = usage
logger.info(f"Updated CPU usage for {host}: {usage}%")
return jsonify({"status": "success"})
# Function to run the provided Python script using MPI
def run_script(script_name, folder_path):
output_log = tempfile.TemporaryFile(mode='w+t')
try:
# Collect all available CPUs
total_cpus = sum(cpu['cpu_count'] for cpu in connected_cpus.values())
# Run the script using MPI
result = subprocess.run(['mpiexec', '-n', str(total_cpus), 'python', script_name], cwd=folder_path, stdout=output_log, stderr=subprocess.STDOUT)
output_log.seek(0)
log_output = output_log.read()
except Exception as e:
log_output = str(e)
finally:
output_log.close()
return log_output
# Function to handle file uploads and script execution
def handle_upload(folder, script_name):
# Create a temporary directory to store uploaded files
temp_dir = tempfile.mkdtemp()
# Save the uploaded folder contents to the temporary directory
folder_path = os.path.join(temp_dir, 'uploaded_folder')
os.makedirs(folder_path, exist_ok=True)
for file_name, file_obj in folder.items():
with open(os.path.join(folder_path, file_name), 'wb') as f:
f.write(file_obj.read())
# Run the script
log_output = run_script(script_name, folder_path)
# Create a zip file of the entire folder (including any new files created by the script)
zip_path = os.path.join(temp_dir, 'output_folder.zip')
with ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(folder_path):
for file in files:
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), folder_path))
return log_output, zip_path
# Function to get connected CPUs information
def get_cpu_info():
info = []
for host, data in connected_cpus.items():
info.append(f"{host}: {data['cpu_count']} CPUs, {data['usage']}% usage")
return "\n".join(info)
# Gradio interface
def gradio_interface():
interface_inputs = [
gr.File(label="Upload Folder", file_count="multiple", file_types=['file']),
gr.Textbox(label="Python Script Name")
]
interface_outputs = [
gr.Textbox(label="Log Output", interactive=False),
gr.File(label="Download Output Folder"),
gr.Textbox(label="Connected CPUs Info", interactive=False)
]
iface = gr.Interface(
fn=handle_upload,
inputs=interface_inputs,
outputs=interface_outputs,
live=True,
theme="light" # Specify a theme that works, "light" is an example
)
return iface
# Function to run Flask app
def run_flask_app():
app.run(host='0.0.0.0', port=7860)
# Function to run Gradio interface
def run_gradio_interface():
iface = gradio_interface()
iface.launch(port=7860)
# Start Flask and Gradio interfaces in separate threads
if __name__ == "__main__":
flask_thread = threading.Thread(target=run_flask_app)
gradio_thread = threading.Thread(target=run_gradio_interface)
flask_thread.start()
gradio_thread.start()
flask_thread.join()
gradio_thread.join()