File size: 3,874 Bytes
d97f2ec
 
 
 
 
 
 
 
 
9c660b1
d97f2ec
 
 
 
 
9c660b1
 
 
d97f2ec
 
9c660b1
 
 
 
d97f2ec
 
 
 
9c660b1
d97f2ec
9c660b1
 
 
 
d97f2ec
 
 
 
 
9c660b1
d97f2ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186d8d1
 
 
 
 
 
 
 
 
 
 
4280e30
186d8d1
 
4280e30
186d8d1
 
 
1f7d2c7
d97f2ec
9c660b1
d97f2ec
1f7d2c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import os
import subprocess
import tempfile
import shutil
from zipfile import ZipFile
import logging
import json
import psutil
from flask import Flask, request, jsonify

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize Flask app
app = Flask(__name__)

connected_cpus = {}

# Endpoint to donate CPU resources
@app.route('/donate_cpu', methods=['POST'])
def donate_cpu_handler():
    data = request.get_json()
    host = data['host']
    cpu_count = data['cpu_count']
    connected_cpus[host] = {"cpu_count": cpu_count, "usage": 0.0}
    logger.info(f"CPU donated by {host} with {cpu_count} CPUs.")
    return jsonify({"status": "success", "message": f"CPU donated by {host}"})

# Endpoint to update CPU usage
@app.route('/update_cpu_usage', methods=['POST'])
def update_cpu_usage_handler():
    data = request.get_json()
    host = data['host']
    usage = data['usage']
    if host in connected_cpus:
        connected_cpus[host]['usage'] = usage
        logger.info(f"Updated CPU usage for {host}: {usage}%")
    return jsonify({"status": "success"})

# Function to run the provided Python script using MPI
def run_script(script_name, folder_path):
    output_log = tempfile.TemporaryFile(mode='w+t')
    try:
        # Collect all available CPUs
        total_cpus = sum(cpu['cpu_count'] for cpu in connected_cpus.values())
        
        # Run the script using MPI
        result = subprocess.run(['mpiexec', '-n', str(total_cpus), 'python', script_name], cwd=folder_path, stdout=output_log, stderr=subprocess.STDOUT)
        output_log.seek(0)
        log_output = output_log.read()
    except Exception as e:
        log_output = str(e)
    finally:
        output_log.close()
    
    return log_output

# Function to handle file uploads and script execution
def handle_upload(folder, script_name):
    # Create a temporary directory to store uploaded files
    temp_dir = tempfile.mkdtemp()
    
    # Save the uploaded folder contents to the temporary directory
    folder_path = os.path.join(temp_dir, 'uploaded_folder')
    os.makedirs(folder_path, exist_ok=True)
    for file_name, file_obj in folder.items():
        with open(os.path.join(folder_path, file_name), 'wb') as f:
            f.write(file_obj.read())

    # Run the script
    log_output = run_script(script_name, folder_path)
    
    # Create a zip file of the entire folder (including any new files created by the script)
    zip_path = os.path.join(temp_dir, 'output_folder.zip')
    with ZipFile(zip_path, 'w') as zipf:
        for root, _, files in os.walk(folder_path):
            for file in files:
                zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), folder_path))
    
    return log_output, zip_path

# Function to get connected CPUs information
def get_cpu_info():
    info = []
    for host, data in connected_cpus.items():
        info.append(f"{host}: {data['cpu_count']} CPUs, {data['usage']}% usage")
    return "\n".join(info)

# Gradio interface
def gradio_interface():
    interface_inputs = [
        gr.File(label="Upload Folder", file_count="multiple", file_types=['file']),
        gr.Textbox(label="Python Script Name")
    ]
    interface_outputs = [
        gr.Textbox(label="Log Output", interactive=False),
        gr.File(label="Download Output Folder"),
        gr.Textbox(label="Connected CPUs Info", interactive=False)
    ]
    
    iface = gr.Interface(
        fn=handle_upload,
        inputs=interface_inputs,
        outputs=interface_outputs,
        live=True,
        theme="light"  # Specify a theme that works, "light" is an example
    )
    
    iface.launch(port=7860)  # Specify the port directly here

# Launch the Gradio interface using Flask's run method
if __name__ == "__main__":
    app.run(host='0.0.0.0', port=7860)