import gradio as gr from transformers import RobertaTokenizer, RobertaForSequenceClassification import torch # Load the model and tokenizer from the specified directory model_path = './finetuned_roberta' tokenizer = RobertaTokenizer.from_pretrained(model_path) model = RobertaForSequenceClassification.from_pretrained(model_path) # Define the prediction function def classify_text(text): # Tokenize the input text inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128) # Get the model's prediction with torch.no_grad(): outputs = model(**inputs) # Apply softmax to get probabilities probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) # Get the probability of the class '1' prob_1 = probabilities[0][1].item() return {"Probability of being 1": prob_1} # Create the Gradio interface iface = gr.Interface( fn=classify_text, inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), outputs="json", title="Text Classification with RoBERTa", description="Enter some text and get the probability of the text being classified as class 1.", enable_queue=True, # Ensure the API is enabled ) # Launch the app if __name__ == "__main__": iface.launch()