import gradio as gr from transformers import RobertaTokenizer, RobertaForSequenceClassification import torch # Load the model and tokenizer from the specified directory model_path = 'GoalZero/aidetection-ada-v0.1' tokenizer = RobertaTokenizer.from_pretrained(model_path) model = RobertaForSequenceClassification.from_pretrained(model_path) # Define the prediction function def classify_text(text): # Remove periods and new lines from the input text cleaned_text = text.replace('.', '').replace('\n', ' ') # Tokenize the cleaned input text inputs = tokenizer(cleaned_text, return_tensors='pt', padding=True, truncation=True, max_length=128) # Get the model's prediction with torch.no_grad(): outputs = model(**inputs) # Apply softmax to get probabilities probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) # Get the probability of the class '1' prob_1 = probabilities[0][1].item() return {"Probability of being AI": prob_1} # Create the Gradio interface iface = gr.Interface( fn=classify_text, inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), outputs="json", title="GoalZero Ada v0.1 Demo", description="Enter some text and get the probability of the text being written by AI. Full checkpoints of the model will be released soon.", ) # Launch the app if __name__ == "__main__": iface.launch(share=True)