import gradio as gr from transformers import RobertaTokenizer, RobertaForSequenceClassification import torch # Define available models model_options = { "GoalZero/aidetection-ada-v0.2": "GoalZero/aidetection-ada-v0.2", "GoalZero/aidetection-ada-v0.1": "GoalZero/aidetection-ada-v0.1" } # Initialize tokenizer and model with the default model default_model = model_options["GoalZero/aidetection-ada-v0.2"] tokenizer = RobertaTokenizer.from_pretrained(default_model) model = RobertaForSequenceClassification.from_pretrained(default_model) # Define the prediction function def classify_text(text, model_choice): global model, tokenizer # Access the global model and tokenizer variables # Check if the model needs to be changed if model_choice != model.name_or_path: model = RobertaForSequenceClassification.from_pretrained(model_choice) tokenizer = RobertaTokenizer.from_pretrained(model_choice) # Remove periods and new lines from the input text cleaned_text = text.replace('.', '').replace('\n', ' ') # Tokenize the cleaned input text inputs = tokenizer(cleaned_text, return_tensors='pt', padding=True, truncation=True, max_length=128) # Get the model's prediction with torch.no_grad(): outputs = model(**inputs) # Apply softmax to get probabilities probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) # Get the probability of the class '1' prob_1 = probabilities[0][1].item() return {"Probability of being AI": prob_1} # Create the Gradio interface iface = gr.Interface( fn=classify_text, inputs=[ gr.Textbox(lines=2, placeholder="Enter text here..."), gr.Dropdown(choices=list(model_options.keys()), value=default_model, label="Select Model") ], outputs="json", title="GoalZero Ada Model Selector", description="Enter text to get the probability of it being AI-written. Select a model version to use.", ) # Launch the app if __name__ == "__main__": iface.launch(share=True)