Oscar Wang
Update app.py
5c87e0a verified
raw
history blame
1.23 kB
import gradio as gr
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
# Load the model and tokenizer from the specified directory
model_path = './finetuned_roberta'
tokenizer = RobertaTokenizer.from_pretrained(model_path)
model = RobertaForSequenceClassification.from_pretrained(model_path)
# Define the prediction function
def classify_text(text):
# Tokenize the input text
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
# Get the model's prediction
with torch.no_grad():
outputs = model(**inputs)
# Apply softmax to get probabilities
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get the probability of the class '1'
prob_1 = probabilities[0][1].item()
return {"Probability of being AI": prob_1}
# Create the Gradio interface
iface = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
outputs="json",
title="GoalZero Endpoint",
description="Enter some text and get the probability of the text being written by AI.",
)
# Launch the app
if __name__ == "__main__":
iface.launch(share=True)