Oscar Wang
Update app.py
34531ec verified
raw
history blame
2.06 kB
import gradio as gr
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
# Define available models
model_options = {
"GoalZero/aidetection-ada-v0.2": "GoalZero/aidetection-ada-v0.2",
"GoalZero/aidetection-ada-v0.1": "GoalZero/aidetection-ada-v0.1"
}
# Initialize tokenizer and model with the default model
default_model = model_options["GoalZero/aidetection-ada-v0.2"]
tokenizer = RobertaTokenizer.from_pretrained(default_model)
model = RobertaForSequenceClassification.from_pretrained(default_model)
# Define the prediction function
def classify_text(text, model_choice):
global model, tokenizer # Access the global model and tokenizer variables
# Check if the model needs to be changed
if model_choice != model.name_or_path:
model = RobertaForSequenceClassification.from_pretrained(model_choice)
tokenizer = RobertaTokenizer.from_pretrained(model_choice)
# Remove periods and new lines from the input text
cleaned_text = text.replace('.', '').replace('\n', ' ')
# Tokenize the cleaned input text
inputs = tokenizer(cleaned_text, return_tensors='pt', padding=True, truncation=True, max_length=128)
# Get the model's prediction
with torch.no_grad():
outputs = model(**inputs)
# Apply softmax to get probabilities
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get the probability of the class '1'
prob_1 = probabilities[0][1].item()
return {"Probability of being AI": prob_1}
# Create the Gradio interface
iface = gr.Interface(
fn=classify_text,
inputs=[
gr.Textbox(lines=2, placeholder="Enter text here..."),
gr.Dropdown(choices=list(model_options.keys()), value=default_model, label="Select Model")
],
outputs="json",
title="GoalZero Ada Model Selector",
description="Enter text to get the probability of it being AI-written. Select a model version to use.",
)
# Launch the app
if __name__ == "__main__":
iface.launch(share=True)