Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,16 @@
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
|
4 |
-
#
|
|
|
|
|
|
|
5 |
model_name = "meta-llama/Llama-3.1-8B-Instruct"
|
6 |
-
|
7 |
-
model
|
|
|
|
|
8 |
|
9 |
def predict(input_text):
|
10 |
# Tokenize input and generate text
|
@@ -17,8 +23,8 @@ interface = gr.Interface(
|
|
17 |
fn=predict,
|
18 |
inputs=gr.Textbox(label="Input Text"),
|
19 |
outputs=gr.Textbox(label="Generated Output"),
|
20 |
-
title="
|
21 |
-
description="Generate text using the
|
22 |
)
|
23 |
|
24 |
# Launch the interface
|
|
|
1 |
+
import os
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Get the Hugging Face token from the environment variable
|
6 |
+
hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
7 |
+
|
8 |
+
# Model name
|
9 |
model_name = "meta-llama/Llama-3.1-8B-Instruct"
|
10 |
+
|
11 |
+
# Load the model and tokenizer with the token
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
14 |
|
15 |
def predict(input_text):
|
16 |
# Tokenize input and generate text
|
|
|
23 |
fn=predict,
|
24 |
inputs=gr.Textbox(label="Input Text"),
|
25 |
outputs=gr.Textbox(label="Generated Output"),
|
26 |
+
title="Meta-LLaMA-3.1-8B-Instruct",
|
27 |
+
description="Generate text using the meta-llama/Llama-3.1-8B-Instruct model."
|
28 |
)
|
29 |
|
30 |
# Launch the interface
|