|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import gradio as gr |
|
|
|
|
|
model_name = "meta-llama/Llama-3.1-8B-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
def predict(input_text): |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Textbox(label="Input Text"), |
|
outputs=gr.Textbox(label="Generated Output"), |
|
title="Phi-4 Model", |
|
description="Generate text using the microsoft/phi-4 model." |
|
) |
|
|
|
|
|
interface.launch() |