from transformers import AutoTokenizer, AutoModel, AutoImageProcessor from sentence_transformers import SentenceTransformer import torch import torch.nn.functional as F from PIL import Image import requests import os import json import math import re import pandas as pd import numpy as np from omeka_s_api_client import OmekaSClient,OmekaSClientError from typing import List, Dict, Any, Union import io from dotenv import load_dotenv # env var load_dotenv(os.path.join(os.getcwd(), ".env")) HF_TOKEN = os.environ.get("HF_TOKEN") # Nomic vison model processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5") vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True) # Nomic text model text_model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True, token=HF_TOKEN) def image_url_to_pil(url: str, max_size=(512, 512)) -> Image: """ Ex usage : image_blobs = df["image_url"].apply(image_url_to_pil).tolist() """ response = requests.get(url, stream=True, timeout=5) response.raise_for_status() image = Image.open(io.BytesIO(response.content)).convert("RGB") image.thumbnail(max_size, Image.Resampling.LANCZOS) return image def generate_img_embed(images_urls, batch_size=20): """Generate image embeddings in batches to manage memory usage. Args: images_urls (list): List of image URLs batch_size (int): Number of images to process at once """ all_embeddings = [] for i in range(0, len(images_urls), batch_size): batch_urls = images_urls[i:i + batch_size] images = [image_url_to_pil(image_url) for image_url in batch_urls] inputs = processor(images, return_tensors="pt") img_emb = vision_model(**inputs).last_hidden_state img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1) all_embeddings.append(img_embeddings.detach().numpy()) return np.vstack(all_embeddings) def generate_text_embed(sentences: List, batch_size=64): """Generate text embeddings in batches to manage memory usage. Args: sentences (List): List of text strings to encode batch_size (int): Number of sentences to process at once """ all_embeddings = [] for i in range(0, len(sentences), batch_size): batch_sentences = sentences[i:i + batch_size] embeddings = text_model.encode(batch_sentences) all_embeddings.append(embeddings) return np.vstack(all_embeddings) def add_concatenated_text_field_exclude_keys(item_dict, keys_to_exclude=None, text_field_key="text", pair_separator=" - "): if not isinstance(item_dict, dict): raise TypeError("Input must be a dictionary.") if keys_to_exclude is None: keys_to_exclude = set() # Default to empty set else: keys_to_exclude = set(keys_to_exclude) # Ensure it's a set for efficient lookup # Add the target text key to the exclusion set automatically keys_to_exclude.add(text_field_key) formatted_pairs = [] for key, value in item_dict.items(): # 1. Skip any key in the exclusion set if key in keys_to_exclude: continue # 2. Check for empty/invalid values (same logic as before) is_empty_or_invalid = False if value is None: is_empty_or_invalid = True elif isinstance(value, float) and math.isnan(value): is_empty_or_invalid = True elif isinstance(value, (str, list, tuple, dict)) and len(value) == 0: is_empty_or_invalid = True # 3. Format and add if valid if not is_empty_or_invalid: formatted_pairs.append(f"{str(key)}: {str(value)}") concatenated_text = f"search_document: {pair_separator.join(formatted_pairs)}" item_dict[text_field_key] = concatenated_text return item_dict def prepare_df_atlas(df: pd.DataFrame, id_col='id', images_col='images_urls'): # Drop completely empty columns #df = df.dropna(axis=1, how='all') # Fill remaining nulls with empty strings #df = df.fillna('') # Ensure ID column exists if id_col not in df.columns: df[id_col] = [f'{i}' for i in range(len(df))] # Ensure indexed field exists and is not empty #if indexed_col not in df.columns: # df[indexed_col] = '' #df[images_col] = df[images_col].apply(lambda x: [x[0]] if isinstance(x, list) and len(x) > 1 else x if isinstance(x, list) else [x]) df[images_col] = df[images_col].apply(lambda x: x[0] if isinstance(x, list) else x) # Optional: force all to string (can help with weird dtypes) for col in df.columns: df[col] = df[col].astype(str) return df def remove_key_value_from_dict(list_of_dict, key_to_remove): new_list = [] for dictionary in list_of_dict: new_dict = dictionary.copy() # Create a copy to avoid modifying the original list if key_to_remove in new_dict: del new_dict[key_to_remove] new_list.append(new_dict) return new_list def remove_key_value_from_dict(input_dict, key_to_remove='text'): if not isinstance(input_dict, dict): raise TypeError("Input must be a dictionary.") if key_to_remove in input_dict: del input_dict[key_to_remove] return input_dict