import dash from dash import dcc, html, Input, Output, State, ctx import dash_bootstrap_components as dbc import plotly.express as px import pandas as pd import numpy as np import umap import hdbscan import sklearn.feature_extraction.text as text from dash.exceptions import PreventUpdate import os from dotenv import load_dotenv import helpers import lancedb from omeka_s_api_client import OmekaSClient, OmekaSClientError from lancedb_client import LanceDBManager # Load .env for credentials load_dotenv() _DEFAULT_PARSE_METADATA = ( 'dcterms:identifier','dcterms:type','dcterms:title', 'dcterms:description', 'dcterms:creator','dcterms:publisher','dcterms:date','dcterms:spatial', 'dcterms:format','dcterms:provenance','dcterms:subject','dcterms:medium', 'bibo:annotates','bibo:content', 'bibo:locator', 'bibo:owner' ) app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) app.config.suppress_callback_exceptions = True server = app.server manager = LanceDBManager() french_stopwords = text.ENGLISH_STOP_WORDS.union([ "alors", "au", "aucuns", "aussi", "autre", "avant", "avec", "avoir", "bon", "car", "ce", "cela", "ces", "ceux", "chaque", "ci", "comme", "comment", "dans", "des", "du", "dedans", "dehors", "depuis", "devrait", "doit", "donc", "dos", "début", "elle", "elles", "en", "encore", "essai", "est", "et", "eu", "fait", "faites", "fois", "font", "hors", "ici", "il", "ils", "je", "juste", "la", "le", "les", "leur", "là", "ma", "maintenant", "mais", "mes", "mine", "moins", "mon", "mot", "même", "ni", "nommés", "notre", "nous", "nouveaux", "ou", "où", "par", "parce", "parole", "pas", "personnes", "peut", "peu", "pièce", "plupart", "pour", "pourquoi", "quand", "que", "quel", "quelle", "quelles", "quels", "qui", "sa", "sans", "ses", "seulement", "si", "sien", "son", "sont", "sous", "soyez", "sujet", "sur", "ta", "tandis", "tellement", "tels", "tes", "ton", "tous", "tout", "trop", "très", "tu", "valeur", "voie", "voient", "vont", "votre", "vous", "vu", "ça", "étaient", "état", "étions", "été", "être" ]) # -------------------- Layout -------------------- app.layout = dbc.Container([ html.H2("🌍 Omeka S UMAP Explorer", className="text-center mt-4"), html.Hr(), # Input controls dbc.Row([ dbc.Col([ html.H5("🔍 From Omeka S"), dcc.Input(id="api-url", value="https://your-omeka-instance.org", type="text", className="form-control"), dbc.Button("Load Item Sets", id="load-sets", color="secondary", className="mt-2"), dcc.Dropdown(id="items-sets-dropdown", placeholder="Select a collection"), dcc.Input(id="table-name", value="my_table", type="text", className="form-control mt-2", placeholder="New table name"), dbc.Button("Process Omeka Collection", id="load-data", color="primary", className="mt-2"), ], md=4), dbc.Col([ html.H5("📁 From LanceDB"), dbc.Button("Load Existing Tables", id="load-tables", color="info"), dcc.Dropdown(id="db-tables-dropdown", placeholder="Select an existing table"), dbc.Button("Display Table", id="load-data-db", color="success", className="mt-2"), ], md=4), dbc.Col([ html.H5("🔎 Query Tool (coming soon)"), dbc.Input(placeholder="Type a search query...", type="text", disabled=True), ], md=4), ], className="mb-4"), # Main plot area and metadata side panel dbc.Row([ dbc.Col( dcc.Graph(id="umap-graph", style={"height": "700px"}), md=8 ), dbc.Col( html.Div(id="point-details", style={ "padding": "15px", "borderLeft": "1px solid #ccc", "height": "700px", "overflowY": "auto" }), md=4 ), ]), # Status/info html.Div(id="status", className="mt-3"), dcc.Store(id="omeka-client-config", storage_type="session") ], fluid=True) # -------------------- Callbacks -------------------- @app.callback( Output("items-sets-dropdown", "options"), Output("omeka-client-config", "data"), Input("load-sets", "n_clicks"), State("api-url", "value"), prevent_initial_call=True ) def load_item_sets(n, base_url): client = OmekaSClient(base_url, "...", "...", 50) try: item_sets = client.list_all_item_sets() options = [{"label": s.get('dcterms:title', [{}])[0].get('@value', 'N/A'), "value": s["o:id"]} for s in item_sets] return options, { "base_url": base_url, "key_identity": "...", "key_credential": "...", "default_per_page": 50 } except Exception as e: return dash.no_update, dash.no_update @app.callback( Output("db-tables-dropdown", "options"), Input("load-tables", "n_clicks"), prevent_initial_call=True ) def list_tables(n): return [{"label": t, "value": t} for t in manager.list_tables()] @app.callback( Output("umap-graph", "figure"), Output("status", "children"), Input("load-data", "n_clicks"), # From Omeka S Input("load-data-db", "n_clicks"), # From DB table State("items-sets-dropdown", "value"), State("omeka-client-config", "data"), State("table-name", "value"), State("db-tables-dropdown", "value"), prevent_initial_call=True ) def handle_data_loading(n_clicks_omeka, n_clicks_db, item_set_id, client_config, table_name, db_table): triggered_id = ctx.triggered_id print(triggered_id) if triggered_id == "load-data": # Omeka S case if not client_config: raise PreventUpdate client = OmekaSClient( base_url=client_config["base_url"], key_identity=client_config["key_identity"], key_credential=client_config["key_credential"] ) df_omeka = harvest_omeka_items(client, item_set_id=item_set_id) items = df_omeka.to_dict(orient="records") records_with_text = [helpers.add_concatenated_text_field_exclude_keys(item, keys_to_exclude=['id','images_urls'], text_field_key='text', pair_separator=' - ') for item in items] df = helpers.prepare_df_atlas(pd.DataFrame(records_with_text), id_col='id', images_col='images_urls') text_embed = helpers.generate_text_embed(df['text'].tolist()) img_embed = helpers.generate_img_embed(df['images_urls'].tolist()) embeddings = np.concatenate([text_embed, img_embed], axis=1) df["embeddings"] = embeddings.tolist() reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, metric="cosine") umap_embeddings = reducer.fit_transform(embeddings) df["umap_embeddings"] = umap_embeddings.tolist() clusterer = hdbscan.HDBSCAN(min_cluster_size=10) cluster_labels = clusterer.fit_predict(umap_embeddings) df["Cluster"] = cluster_labels vectorizer = text.TfidfVectorizer(max_features=1000, stop_words=list(french_stopwords), lowercase=True) tfidf_matrix = vectorizer.fit_transform(df["text"].astype(str).tolist()) top_words = [] for label in sorted(df["Cluster"].unique()): if label == -1: top_words.append("Noise") continue mask = (df["Cluster"] == label).to_numpy().nonzero()[0] cluster_docs = tfidf_matrix[mask] mean_tfidf = cluster_docs.mean(axis=0) mean_tfidf = np.asarray(mean_tfidf).flatten() top_indices = mean_tfidf.argsort()[::-1][:5] terms = [vectorizer.get_feature_names_out()[i] for i in top_indices] top_words.append(", ".join(terms)) cluster_name_map = {label: name for label, name in zip(sorted(df["Cluster"].unique()), top_words)} df["Topic"] = df["Cluster"].map(cluster_name_map) manager.initialize_table(table_name) manager.add_entry(table_name, df.to_dict(orient="records")) elif triggered_id == "load-data-db": # Load existing LanceDB table if not db_table: raise PreventUpdate items = manager.get_content_table(db_table) df = pd.DataFrame(items) df = df.dropna(axis=1, how='all') df = df.fillna('') #umap_embeddings = np.array(df["umap_embeddings"].tolist()) else: raise PreventUpdate # Plotting return create_umap_plot(df) @app.callback( Output("point-details", "children"), Input("umap-graph", "clickData") ) def show_point_details(clickData): if not clickData: return html.Div("🖱️ Click a point to see more details.", style={"color": "#888"}) img_url, title, desc = clickData["points"][0]["customdata"] return html.Div([ html.H4(title), html.Img(src=img_url, style={"maxWidth": "100%", "marginBottom": "10px"}), html.P(desc or "No description available.") ]) # -------------------- Utility -------------------- def harvest_omeka_items(client, item_set_id=None, per_page=50): """ Fetch and parse items from Omeka S. Args: client: OmekaSClient instance item_set_id: ID of the item set to fetch items from (optional) per_page: Number of items to fetch per page (default: 50) Returns: DataFrame containing parsed item data """ print("\n--- Fetching and Parsing Multiple Items by colection---") try: # Fetch first 5 items items_list = client.list_all_items(item_set_id=item_set_id, per_page=per_page) print(items_list) print(f"Fetched {len(items_list)} items.") parsed_items_list = [] for item_raw in items_list: if 'o:media' in item_raw: parsed = client.digest_item_data(item_raw, prefixes=_DEFAULT_PARSE_METADATA) if parsed: # Only add if parsing was successful # Add media medias_id = [x["o:id"] for x in item_raw["o:media"]] medias_list = [] for media_id in medias_id: media = client.get_media(media_id) if "image" in media["o:media_type"]: medias_list.append(media.get('o:original_url')) if medias_list: # Only append if there are image URLs parsed["images_urls"] = medias_list parsed_items_list.append(parsed) print(f"Successfully parsed {len(parsed_items_list)} items.") print(f"Successfully parsed {len(parsed_items_list)} items.") # Note: List columns (like dcterms:title) might need further handling in Pandas print("\nDataFrame from parsed items:") return pd.DataFrame(parsed_items_list) except OmekaSClientError as e: print(f"Error fetching/parsing multiple items: {e}") except Exception as e: print(f"An unexpected error occurred during multi-item parsing: {e}") def create_umap_plot(df): coords = np.array(df["umap_embeddings"].tolist()) fig = px.scatter( df, x=coords[:, 0], y=coords[:, 1], color="Topic", custom_data=["images_urls", "Title", "Description"], hover_data=None, title="UMAP Projection with HDBSCAN Topics" ) fig.update_traces( marker=dict(size=8, line=dict(width=1, color="DarkSlateGrey")), hovertemplate="%{customdata[1]}
" ) fig.update_layout(height=700, margin=dict(t=30, b=30, l=30, r=30)) return fig, f"Loaded {len(df)} items and projected into 2D." if __name__ == "__main__": app.run(debug=True, port=7860)