import dash
from dash import dcc, html, Input, Output, State, ctx
import dash_bootstrap_components as dbc
import plotly.express as px
import pandas as pd
import numpy as np
import umap
import hdbscan
import sklearn.feature_extraction.text as text
from dash.exceptions import PreventUpdate
import os
from dotenv import load_dotenv
import helpers
import lancedb
from omeka_s_api_client import OmekaSClient, OmekaSClientError
from lancedb_client import LanceDBManager
# Load .env for credentials
load_dotenv()
_DEFAULT_PARSE_METADATA = (
'dcterms:identifier','dcterms:type','dcterms:title', 'dcterms:description',
'dcterms:creator','dcterms:publisher','dcterms:date','dcterms:spatial',
'dcterms:format','dcterms:provenance','dcterms:subject','dcterms:medium',
'bibo:annotates','bibo:content', 'bibo:locator', 'bibo:owner'
)
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
app.config.suppress_callback_exceptions = True
server = app.server
manager = LanceDBManager()
french_stopwords = text.ENGLISH_STOP_WORDS.union([
"alors", "au", "aucuns", "aussi", "autre", "avant", "avec", "avoir", "bon",
"car", "ce", "cela", "ces", "ceux", "chaque", "ci", "comme", "comment", "dans",
"des", "du", "dedans", "dehors", "depuis", "devrait", "doit", "donc", "dos",
"début", "elle", "elles", "en", "encore", "essai", "est", "et", "eu", "fait",
"faites", "fois", "font", "hors", "ici", "il", "ils", "je", "juste", "la", "le",
"les", "leur", "là", "ma", "maintenant", "mais", "mes", "mine", "moins", "mon",
"mot", "même", "ni", "nommés", "notre", "nous", "nouveaux", "ou", "où", "par",
"parce", "parole", "pas", "personnes", "peut", "peu", "pièce", "plupart", "pour",
"pourquoi", "quand", "que", "quel", "quelle", "quelles", "quels", "qui", "sa",
"sans", "ses", "seulement", "si", "sien", "son", "sont", "sous", "soyez", "sujet",
"sur", "ta", "tandis", "tellement", "tels", "tes", "ton", "tous", "tout", "trop",
"très", "tu", "valeur", "voie", "voient", "vont", "votre", "vous", "vu", "ça",
"étaient", "état", "étions", "été", "être"
])
# -------------------- Layout --------------------
app.layout = dbc.Container([
html.H2("🌍 Omeka S UMAP Explorer", className="text-center mt-4"),
html.Hr(),
# Input controls
dbc.Row([
dbc.Col([
html.H5("🔍 From Omeka S"),
dcc.Input(id="api-url", value="https://your-omeka-instance.org", type="text", className="form-control"),
dbc.Button("Load Item Sets", id="load-sets", color="secondary", className="mt-2"),
dcc.Dropdown(id="items-sets-dropdown", placeholder="Select a collection"),
dcc.Input(id="table-name", value="my_table", type="text", className="form-control mt-2", placeholder="New table name"),
dbc.Button("Process Omeka Collection", id="load-data", color="primary", className="mt-2"),
], md=4),
dbc.Col([
html.H5("📁 From LanceDB"),
dbc.Button("Load Existing Tables", id="load-tables", color="info"),
dcc.Dropdown(id="db-tables-dropdown", placeholder="Select an existing table"),
dbc.Button("Display Table", id="load-data-db", color="success", className="mt-2"),
], md=4),
dbc.Col([
html.H5("🔎 Query Tool (coming soon)"),
dbc.Input(placeholder="Type a search query...", type="text", disabled=True),
], md=4),
], className="mb-4"),
# Main plot area and metadata side panel
dbc.Row([
dbc.Col(
dcc.Graph(id="umap-graph", style={"height": "700px"}),
md=8
),
dbc.Col(
html.Div(id="point-details", style={
"padding": "15px",
"borderLeft": "1px solid #ccc",
"height": "700px",
"overflowY": "auto"
}),
md=4
),
]),
# Status/info
html.Div(id="status", className="mt-3"),
dcc.Store(id="omeka-client-config", storage_type="session")
], fluid=True)
# -------------------- Callbacks --------------------
@app.callback(
Output("items-sets-dropdown", "options"),
Output("omeka-client-config", "data"),
Input("load-sets", "n_clicks"),
State("api-url", "value"),
prevent_initial_call=True
)
def load_item_sets(n, base_url):
client = OmekaSClient(base_url, "...", "...", 50)
try:
item_sets = client.list_all_item_sets()
options = [{"label": s.get('dcterms:title', [{}])[0].get('@value', 'N/A'), "value": s["o:id"]} for s in item_sets]
return options, {
"base_url": base_url,
"key_identity": "...",
"key_credential": "...",
"default_per_page": 50
}
except Exception as e:
return dash.no_update, dash.no_update
@app.callback(
Output("db-tables-dropdown", "options"),
Input("load-tables", "n_clicks"),
prevent_initial_call=True
)
def list_tables(n):
return [{"label": t, "value": t} for t in manager.list_tables()]
@app.callback(
Output("umap-graph", "figure"),
Output("status", "children"),
Input("load-data", "n_clicks"), # From Omeka S
Input("load-data-db", "n_clicks"), # From DB table
State("items-sets-dropdown", "value"),
State("omeka-client-config", "data"),
State("table-name", "value"),
State("db-tables-dropdown", "value"),
prevent_initial_call=True
)
def handle_data_loading(n_clicks_omeka, n_clicks_db, item_set_id, client_config, table_name, db_table):
triggered_id = ctx.triggered_id
print(triggered_id)
if triggered_id == "load-data": # Omeka S case
if not client_config:
raise PreventUpdate
client = OmekaSClient(
base_url=client_config["base_url"],
key_identity=client_config["key_identity"],
key_credential=client_config["key_credential"]
)
df_omeka = harvest_omeka_items(client, item_set_id=item_set_id)
items = df_omeka.to_dict(orient="records")
records_with_text = [helpers.add_concatenated_text_field_exclude_keys(item, keys_to_exclude=['id','images_urls'], text_field_key='text', pair_separator=' - ') for item in items]
df = helpers.prepare_df_atlas(pd.DataFrame(records_with_text), id_col='id', images_col='images_urls')
text_embed = helpers.generate_text_embed(df['text'].tolist())
img_embed = helpers.generate_img_embed(df['images_urls'].tolist())
embeddings = np.concatenate([text_embed, img_embed], axis=1)
df["embeddings"] = embeddings.tolist()
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, metric="cosine")
umap_embeddings = reducer.fit_transform(embeddings)
df["umap_embeddings"] = umap_embeddings.tolist()
clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
cluster_labels = clusterer.fit_predict(umap_embeddings)
df["Cluster"] = cluster_labels
vectorizer = text.TfidfVectorizer(max_features=1000, stop_words=list(french_stopwords), lowercase=True)
tfidf_matrix = vectorizer.fit_transform(df["text"].astype(str).tolist())
top_words = []
for label in sorted(df["Cluster"].unique()):
if label == -1:
top_words.append("Noise")
continue
mask = (df["Cluster"] == label).to_numpy().nonzero()[0]
cluster_docs = tfidf_matrix[mask]
mean_tfidf = cluster_docs.mean(axis=0)
mean_tfidf = np.asarray(mean_tfidf).flatten()
top_indices = mean_tfidf.argsort()[::-1][:5]
terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
top_words.append(", ".join(terms))
cluster_name_map = {label: name for label, name in zip(sorted(df["Cluster"].unique()), top_words)}
df["Topic"] = df["Cluster"].map(cluster_name_map)
manager.initialize_table(table_name)
manager.add_entry(table_name, df.to_dict(orient="records"))
elif triggered_id == "load-data-db": # Load existing LanceDB table
if not db_table:
raise PreventUpdate
items = manager.get_content_table(db_table)
df = pd.DataFrame(items)
df = df.dropna(axis=1, how='all')
df = df.fillna('')
#umap_embeddings = np.array(df["umap_embeddings"].tolist())
else:
raise PreventUpdate
# Plotting
return create_umap_plot(df)
@app.callback(
Output("point-details", "children"),
Input("umap-graph", "clickData")
)
def show_point_details(clickData):
if not clickData:
return html.Div("🖱️ Click a point to see more details.", style={"color": "#888"})
img_url, title, desc = clickData["points"][0]["customdata"]
return html.Div([
html.H4(title),
html.Img(src=img_url, style={"maxWidth": "100%", "marginBottom": "10px"}),
html.P(desc or "No description available.")
])
# -------------------- Utility --------------------
def harvest_omeka_items(client, item_set_id=None, per_page=50):
"""
Fetch and parse items from Omeka S.
Args:
client: OmekaSClient instance
item_set_id: ID of the item set to fetch items from (optional)
per_page: Number of items to fetch per page (default: 50)
Returns:
DataFrame containing parsed item data
"""
print("\n--- Fetching and Parsing Multiple Items by colection---")
try:
# Fetch first 5 items
items_list = client.list_all_items(item_set_id=item_set_id, per_page=per_page)
print(items_list)
print(f"Fetched {len(items_list)} items.")
parsed_items_list = []
for item_raw in items_list:
if 'o:media' in item_raw:
parsed = client.digest_item_data(item_raw, prefixes=_DEFAULT_PARSE_METADATA)
if parsed: # Only add if parsing was successful
# Add media
medias_id = [x["o:id"] for x in item_raw["o:media"]]
medias_list = []
for media_id in medias_id:
media = client.get_media(media_id)
if "image" in media["o:media_type"]:
medias_list.append(media.get('o:original_url'))
if medias_list: # Only append if there are image URLs
parsed["images_urls"] = medias_list
parsed_items_list.append(parsed)
print(f"Successfully parsed {len(parsed_items_list)} items.")
print(f"Successfully parsed {len(parsed_items_list)} items.")
# Note: List columns (like dcterms:title) might need further handling in Pandas
print("\nDataFrame from parsed items:")
return pd.DataFrame(parsed_items_list)
except OmekaSClientError as e:
print(f"Error fetching/parsing multiple items: {e}")
except Exception as e:
print(f"An unexpected error occurred during multi-item parsing: {e}")
def create_umap_plot(df):
coords = np.array(df["umap_embeddings"].tolist())
fig = px.scatter(
df, x=coords[:, 0], y=coords[:, 1],
color="Topic",
custom_data=["images_urls", "Title", "Description"],
hover_data=None,
title="UMAP Projection with HDBSCAN Topics"
)
fig.update_traces(
marker=dict(size=8, line=dict(width=1, color="DarkSlateGrey")),
hovertemplate="%{customdata[1]}
"
)
fig.update_layout(height=700, margin=dict(t=30, b=30, l=30, r=30))
return fig, f"Loaded {len(df)} items and projected into 2D."
if __name__ == "__main__":
app.run(debug=True, port=7860)