Geraldine's picture
Upload 6 files
97226b8 verified
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
from sentence_transformers import SentenceTransformer
import torch
import torch.nn.functional as F
from PIL import Image
import requests
import os
import json
import math
import re
import pandas as pd
import numpy as np
from omeka_s_api_client import OmekaSClient,OmekaSClientError
from typing import List, Dict, Any, Union
import io
from dotenv import load_dotenv
# env var
load_dotenv(os.path.join(os.getcwd(), ".env"))
HF_TOKEN = os.environ.get("HF_TOKEN")
# Nomic vison model
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
# Nomic text model
text_model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True, token=HF_TOKEN)
def image_url_to_pil(url: str, max_size=(512, 512)) -> Image:
"""
Ex usage : image_blobs = df["image_url"].apply(image_url_to_pil).tolist()
"""
response = requests.get(url, stream=True, timeout=5)
response.raise_for_status()
image = Image.open(io.BytesIO(response.content)).convert("RGB")
image.thumbnail(max_size, Image.Resampling.LANCZOS)
return image
def generate_img_embed(images_urls, batch_size=20):
"""Generate image embeddings in batches to manage memory usage.
Args:
images_urls (list): List of image URLs
batch_size (int): Number of images to process at once
"""
all_embeddings = []
for i in range(0, len(images_urls), batch_size):
batch_urls = images_urls[i:i + batch_size]
images = [image_url_to_pil(image_url) for image_url in batch_urls]
inputs = processor(images, return_tensors="pt")
img_emb = vision_model(**inputs).last_hidden_state
img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
all_embeddings.append(img_embeddings.detach().numpy())
return np.vstack(all_embeddings)
def generate_text_embed(sentences: List, batch_size=64):
"""Generate text embeddings in batches to manage memory usage.
Args:
sentences (List): List of text strings to encode
batch_size (int): Number of sentences to process at once
"""
all_embeddings = []
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i + batch_size]
embeddings = text_model.encode(batch_sentences)
all_embeddings.append(embeddings)
return np.vstack(all_embeddings)
def add_concatenated_text_field_exclude_keys(item_dict, keys_to_exclude=None, text_field_key="text", pair_separator=" - "):
if not isinstance(item_dict, dict):
raise TypeError("Input must be a dictionary.")
if keys_to_exclude is None:
keys_to_exclude = set() # Default to empty set
else:
keys_to_exclude = set(keys_to_exclude) # Ensure it's a set for efficient lookup
# Add the target text key to the exclusion set automatically
keys_to_exclude.add(text_field_key)
formatted_pairs = []
for key, value in item_dict.items():
# 1. Skip any key in the exclusion set
if key in keys_to_exclude:
continue
# 2. Check for empty/invalid values (same logic as before)
is_empty_or_invalid = False
if value is None: is_empty_or_invalid = True
elif isinstance(value, float) and math.isnan(value): is_empty_or_invalid = True
elif isinstance(value, (str, list, tuple, dict)) and len(value) == 0: is_empty_or_invalid = True
# 3. Format and add if valid
if not is_empty_or_invalid:
formatted_pairs.append(f"{str(key)}: {str(value)}")
concatenated_text = f"search_document: {pair_separator.join(formatted_pairs)}"
item_dict[text_field_key] = concatenated_text
return item_dict
def prepare_df_atlas(df: pd.DataFrame, id_col='id', images_col='images_urls'):
# Drop completely empty columns
#df = df.dropna(axis=1, how='all')
# Fill remaining nulls with empty strings
#df = df.fillna('')
# Ensure ID column exists
if id_col not in df.columns:
df[id_col] = [f'{i}' for i in range(len(df))]
# Ensure indexed field exists and is not empty
#if indexed_col not in df.columns:
# df[indexed_col] = ''
#df[images_col] = df[images_col].apply(lambda x: [x[0]] if isinstance(x, list) and len(x) > 1 else x if isinstance(x, list) else [x])
df[images_col] = df[images_col].apply(lambda x: x[0] if isinstance(x, list) else x)
# Optional: force all to string (can help with weird dtypes)
for col in df.columns:
df[col] = df[col].astype(str)
return df
def remove_key_value_from_dict(list_of_dict, key_to_remove):
new_list = []
for dictionary in list_of_dict:
new_dict = dictionary.copy() # Create a copy to avoid modifying the original list
if key_to_remove in new_dict:
del new_dict[key_to_remove]
new_list.append(new_dict)
return new_list
def remove_key_value_from_dict(input_dict, key_to_remove='text'):
if not isinstance(input_dict, dict):
raise TypeError("Input must be a dictionary.")
if key_to_remove in input_dict:
del input_dict[key_to_remove]
return input_dict